传送门

题意,给一棵树,每次给两个点\(x,y\),求\(\max_{i=1}^{n}(\min(di_{x,i},di_{y,i}))\)

看std看了好久

以下是一个优秀的在线做法,\(O(nlogn)\)预处理,每次询问可以做到\(O(1)\)

首先把直径扣出来,然后就可以把整棵树看成一条直径上挂了n棵树,预处理每个点到直径的最短距离,和直径上每个点挂的树中距离这个点最远的距离\(d_i\)

对于每次询问,造成答案的点要么是直径的端点,要么是两个点路径上的某个直径点挂的树的最远距离的点,于是可以分类讨论.第一类比较好算,第二类的话,用个st表存\(d_i\),每次在距离\(x\)和\(y\)更近的区间内取最大值,再加加减减

详见代码

#include<bits/stdc++.h>
#define il inline
#define re register
#define LL long long
#define ull unsigned long long
#define db double
#define eps (1e-7) using namespace std;
const int N=100000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],hd[N],tot=1;
il void add(int x,int y)
{
++tot,to[tot]=y,nt[tot]=hd[x],hd[x]=tot;
++tot,to[tot]=x,nt[tot]=hd[y],hd[y]=tot;
}
int n,nn,m,st[N],de[N],fa[N],a1,a2,rtt,id[N],d[N],lz[N];
int ma[N][18],mi[N][18];
bool v[N];
void dfs(int x,int ffa)
{
if(de[x]>de[rtt]) rtt=x;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==ffa) continue;
de[y]=de[x]+1,fa[y]=x;
dfs(y,x);
}
}
void dd(int x,int ffa,int ii)
{
id[x]=ii,de[x]=de[ffa]+1; //把深度处理成到直径上点的距离
d[ii]=max(d[ii],de[x]);
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==ffa||v[y]) continue;
dd(y,x,ii);
}
}
il void init()
{
for(int i=1;i<=m;i++) dd(st[i],0,i),lz[i]=log2(i);
for(int i=1;i<=m;i++) ma[i][0]=d[i]+i,mi[i][0]=d[i]-i;
for(int j=1;j<=nn;j++)
for(int i=1;i+(1<<(j-1))<=m;i++)
{
ma[i][j]=max(ma[i][j-1],ma[i+(1<<(j-1))][j-1]);
mi[i][j]=max(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
}
}
il int quer(int l,int r,int o)
{
if(l>r) return -1e9;
int j=lz[r-l+1];
if(o==1) return max(mi[l][j],mi[r-(1<<j)+1][j]);
return max(ma[l][j],ma[r-(1<<j)+1][j]);
} int main()
{
n=rd();
nn=log(n)/log(2)+1;
for(int i=1;i<n;i++)
{
int x=rd(),y=rd();
add(x,y);
}
dfs(1,0),a1=rtt,rtt=0,fa[a1]=0,dfs(a1,0),a2=rtt;
int nw=a2;
while(nw)
{
st[++m]=nw,v[nw]=true,nw=fa[nw];
}
for(int i=1;i<=m/2;i++) swap(st[i],st[m-i+1]);
de[0]=-1,init();
int q=rd(),an=0;
while(q--)
{
int x=rd(),y=rd();
an=0;
if(id[x]>id[y]) swap(x,y);
LL ss=id[x]-de[x]+id[y]+de[y]; //ss其实是x和y路径上中间点的直径点编号*2
if(id[x]==id[y]) an=max(id[x]-1,m-id[y])+min(de[x],de[y]);
else if(ss<=id[x]*2) an=max(id[y]-1,m-id[y])+de[y];
else if(ss>=id[y]*2) an=max(id[x]-1,m-id[x])+de[x];
else ss/=2,an=max(max(id[x]-1,quer(id[x]+1,ss,0)-id[x])+de[x],de[y]+max(m-id[y],quer(ss+1,id[y]-1,1)+id[y])); //对于x,到中间点区间内的答案为max(id[i]-id[x]+d[i]),y类似
printf("%d\n",an);
}
return 0;
}

CF418D Big Problems for Organizers的更多相关文章

  1. CF418D Big Problems for Organizers 树的直径、ST表

    题目传送门:http://codeforces.com/problemset/problem/418/D 大意:给出一棵有$N$个节点的树,所有树边边权为$1$,给出$M$次询问,每个询问给出$x,y ...

  2. [JZOJ3690] 【CF418D】Big Problems for Organizers

    题目 题目大意 给你一棵树,然后有一堆询问,每次给出两个点. 问所有点到两个点中最近点的距离的最大值. 正解 本来打了倍增,然后爆了,也懒得调-- 显然可以在两个点之间的路径的中点处割开,一边归一个点 ...

  3. Codeforces 418d Big Problems for Organizers [树形dp][倍增lca]

    题意: 给你一棵有n个节点的树,树的边权都是1. 有m次询问,每次询问输出树上所有节点离其较近结点距离的最大值. 思路: 1.首先是按照常规树形dp的思路维护一个子树节点中距离该点的最大值son_di ...

  4. Big Problems for Organizers CodeForces - 418D (贪心,直径)

    大意: 给定n结点树, m个询问, 每次给出两个旅馆的位置, 求树上所有结点到最近旅馆距离的最大值 先考虑一些简单情形. 若旅馆只有一个的话, 显然到旅馆最远的点是直径端点之一 若树为链的话, 显然是 ...

  5. @codeforces - 418D@ Big Problems for Organizers

    目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个点连成一棵树,经过每条边需要花费 1 个单位时间. 现给出 ...

  6. Unity性能优化(2)-官方教程Diagnosing performance problems using the Profiler window翻译

    本文是Unity官方教程,性能优化系列的第二篇<Diagnosing performance problems using the Profiler window>的简单翻译. 相关文章: ...

  7. MS SQL错误:SQL Server failed with error code 0xc0000000 to spawn a thread to process a new login or connection. Check the SQL Server error log and the Windows event logs for information about possible related problems

          早晨宁波那边的IT人员打电话告知数据库无法访问了.其实我在早晨也发现Ignite监控下的宁波的数据库服务器出现了异常,但是当时正在检查查看其它服务器发过来的各类邮件,还没等到我去确认具体情 ...

  8. Problems about trees

    Problems (1) 给一棵带边权的树,求遍历这棵树(每个节点至少经过一次)再回到起点的最短路程. 答案是显然的:边权之和的两倍. (2)给一棵带边权的树,求遍历这棵树(每个节点至少经过一次)的最 ...

  9. Problems with MMM for mysql(译文)

    Problems with mmm for mysql posted in MySQL by shlomi 原文:http://code.openark.org/blog/mysql/problems ...

随机推荐

  1. CSS等高布局的7种方式

    前面的话 等高布局是指子元素在父元素中高度相等的布局方式.等高布局的实现包括伪等高和真等高,伪等高只是看上去等高而已,真等高是实实在在的等高.本文将介绍边框模拟.负margin这两种伪等高以及tabl ...

  2. java List 根据属性排序

    Collections.sort(fileItems, new Comparator<FileItem>() { public int compare(FileItem arg0, Fil ...

  3. BZOJ2004 HNOI2010公交线路(状压dp+矩阵快速幂)

    由数据范围容易想到矩阵快速幂和状压. 显然若要满足一辆公交车的相邻站台差不超过p,则每相邻p个站台中每辆车至少经过一个站台.可以发现这既是必要的,也是充分的. 开始的时候所有车是相邻的.考虑每次把一辆 ...

  4. NOIP 2018 游记(退役了!)

    一片空白 在霉的不能再霉的18年11月,Noip2018上,倒霉的我也是贼有意思,感冒加身,D2发烧,数组开小…我还能说什么MMP,身体和考试能力真的很重要. ……(省略无数字的心理活动,有空补上~) ...

  5. Tunnel Warfare HDU - 1540(线段树最长连续区间)

    题意: 一条线上的点,D x是破坏这个点,Q x是表示查询以x所在的最长的连续的点的个数,R是恢复上一次破坏的点.   解析: 线段树结点 设置一个  lq记录区间左端点开始的最大连续个数,  rq ...

  6. Java中如何输出对勾,ASCII编码与字符串相互转换

    Java中如何输出对勾? 最简单的方法是,从那个地方拷贝一个对勾的字符,然后System.out.println("√"); 但是心里总会担心,万一机器不认这个字符该怎么办?(可能 ...

  7. day29 __eq__ 比较

    本质上 "==" 调用的内部方法就是 __eq__() 正常情况下,两个名字相同的变量比较的是内存地址,内存地址当然是不一样的可以使用__eq__来改变成名字相同就相等 1 cla ...

  8. 自学Aruba4.1-Aruba开机初始化

    点击返回:自学Aruba之路 自学Aruba4.1-Aruba开机初始化 无线控制器刚启动的时候,是没有任何配置的,需要进行初始化配置才能进行管理. 通过无线控制器的console端口连接无线控制器, ...

  9. 自学Zabbix3.10.2-事件通知Notifications upon events-Actions报警配置

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 自学Zabbix3.10.2-事件通知Notifications upon events-Acti ...

  10. 一个简单的mock server

    在前后端分离的项目中, 前端无需等后端接口提供了才调试, 后端无需等第三方接口提供了才调试, 基于“契约”,可以通过mock server实现调试, 下面是一个简单的mock server,通过pyt ...