HDU 5607 graph(矩阵乘法)
题意
在一个 \(n\) 个节点 \(m\) 条边的有向图上随机游走,有 \(Q\) 个询问,每次给定一个起点 \(u\) 和步数 \(K\) ,每次回答最后停在每个节点的概率。
\(1 \leq n \leq 50\)
\(1 \leq m \leq 1000\)
\(1 \leq Q \leq 20\)
\(1 \leq K \leq 10^9\)
思路
同样构造一个“起始矩阵” \(A_{1n}\) 和一个“转移矩阵” \(B_{nn}\) 。如果知道 \(B_{i,j}\) 的含义,就是 \(i\) 点到 \(j\) 点的“转移系数” ,矩阵乘法就不是问题了。
对于每个询问 \((u,K)\) ,\(A_{1,u}=1\) ,\(B_{i,j}\) 为 \(i\) 点走到 \(j\) 点的概率,然后输出 \(A*B^K\) 矩阵的每一项即可。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=55;
const int M=1005;
const int P=1e9+7;
struct Matrix
{
int n,m,a[N][N];
int *operator [](const int x){return a[x];}
void resize(int _n,int _m){n=_n,m=_m;}
Matrix operator *(const Matrix &_)const
{
Matrix res;res.resize(n,_.m);
FOR(i,1,n)FOR(j,1,_.m)
{
res[i][j]=0;
FOR(k,1,m)(res[i][j]+=1ll*a[i][k]*_.a[k][j]%P)%=P;
}
return res;
}
Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
};
LL inv[M];
Matrix A,B;
int oud[N],U[M],V[M];
int n,m,Q;
Matrix Pow(Matrix a,int p)
{
Matrix res;res.resize(a.n,a.n);
FOR(i,1,res.n)FOR(j,1,res.n)res[i][j]=(i==j);
for(;p>0;p>>=1,a*=a)if(p&1)res*=a;
return res;
}
LL frac(LL x,LL y){return x*inv[y]%P;}
int main()
{
inv[0]=inv[1]=1;FOR(i,2,N-1)inv[i]=(P-P/i)*inv[P%i]%P;
while(~scanf("%d%d",&n,&m))
{
A.resize(1,n),B.resize(n,n);
memset(oud,0,sizeof(oud));
FOR(i,1,m)scanf("%d%d",&U[i],&V[i]),oud[U[i]]++;
FOR(i,1,n)FOR(j,1,n)B[i][j]=0;
FOR(i,1,m)(B[U[i]][V[i]]+=frac(1,oud[U[i]]))%=P;
scanf("%d",&Q);
while(Q--)
{
int u,K;
scanf("%d%d",&u,&K);
FOR(i,1,n)A[1][i]=(i==u);
A*=Pow(B,K);
FOR(i,1,n)printf("%d ",A[1][i]);
puts("");
}
}
return 0;
}
HDU 5607 graph(矩阵乘法)的更多相关文章
- HDU 5607 graph 矩阵快速幂 + 快速幂
这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...
- HDU 5607 graph(DP+矩阵乘法)
[题目链接] http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=663&pid=1002 [题意] 给定一个有向 ...
- HDU 5607 graph(矩阵优化+概率DP)
该题非常easy想到求概率的转移方程:用d[i][j]表示第i步,走到j点的概率. 可是该题的k高达1e9.所以依照套路.要用矩阵相乘来优化. 第一次写矩阵相乘. 大概的意思就是利用矩阵实现递推. 而 ...
- hdu 5607 graph (矩阵乘法快速幂)
考虑一个经典的问题: 询问从某个点出发,走 k 步到达其它各点的方案数? 这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决. 本题思路: 矩阵经典问题:求从i点走k步后到达j点的方案数(mod p) ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- HDU 2604 Queuing (矩阵乘法)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 5863 cjj's string game (矩阵乘法优化递推)
题目大意:用k种字符构建两个长度为n的字符串(每种字符有无限多个),要求对应位置字符相同的连续子串最长长度为m,问方法数. 其中k,n,m是输入,n(1<=n<=1000000000), ...
- Hdu 2157 How many ways??(DP||矩阵乘法)
How many ways?? Time Limit:1000 MS Memory Limit: 32768 K Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- arc 092C 2D Plane 2N Points
题意: 有n个红色的点和n个蓝色的点,如果红色的点的横坐标和纵坐标分别比蓝色的点的横坐标和纵坐标小,那么这两个点就可以成为一对友好的点. 问最多可以形成多少对友好的点. 思路: 裸的二分图匹配,对于满 ...
- JVM参数设置及条调优原理
http://unixboy.iteye.com/blog/174173/ 堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟 ...
- 高性能NIO框架Netty入门篇
http://cxytiandi.com/blog/detail/17345 Netty介绍 Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具 ...
- HDU 2176 取(m堆)石子游戏 (尼姆博奕)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎 ...
- 自学java第六周的总结
在这个星期里,我主要将以前看过的复习了一遍,并且阅读并做了相关的题. 下个星期继续努力.
- Python学习路线人工智能线性代数知识点汇总
人工智能和数据分析相关的线性代数知识.比如什么是矢量,什么是矩阵,矩阵的加减乘除.矩阵对角化,三角化,秩,QR法,最小二法.等等 矢量: 高中数学中都学过复数,负数表达式是: a+bi 复数实际上和二 ...
- RTP协议全解析(H264码流和PS流)(转)
源: RTP协议全解析(H264码流和PS流)
- php的serialize()函数和unserialize()函数
适用情境:serialize()返回字符串,此字符串包含了表示value的字节流,可以存储于任何地方.这有利于存储或传递 PHP 的值,同时不丢失其类型和结构.比较有用的地方就是将数据存入数据库或记录 ...
- JDK源码之ReentrantLock
1.定义 ReentrantLock是一种可重入锁,允许一个线程对同一个资源重复加锁,如果说是当一个线程调用一个锁的lock()方法,然后再次调用锁的lock()方法,当锁不支持可重入时,该线程会被自 ...
- 浅谈Windows用户帐户控制(User Account Control,UAC)
Microsoft一个事实:大多数用户都用一个Administrator(管理员)帐户来登录Windows.利用这个帐户,用户几乎没有任何限制地访问重要的系统资源,因为该帐户被授予很高的权限.一旦用户 ...