HDU1536 S-Nim(sg函数变换规则)
S-Nim
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9829 Accepted Submission(s): 4038
Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:
The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
The players take turns chosing a heap and removing a positive number of beads from it.
The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:
Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
If the xor-sum is 0, too bad, you will lose.
Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
The player that takes the last bead wins.
After the winning player's last move the xor-sum will be 0.
The xor-sum will change after every move.
Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
Sample Input
2 2 5//两种取法,只能取2或5个
3//例数
2 5 12//例一:两堆石子个数分别为5和12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5//五种取法。。。。
3
2 5 12
3 2 4 7
4 2 3 7 12
0
Sample Output
LWW
WWL
#include<iostream>
#include<string.h>
using namespace std;
const int N=10001;
int k,sg[N],fa[111];
void getsg(int n)
{
bool mex[N];
for(int i=1;i<=n;i++)
{
memset(mex,0,sizeof(mex));
for(int j=0;j<k;j++)
if(i>=fa[j])
mex[sg[i-fa[j]]]=1;
for(int j=0;;j++)
if(!mex[j])
{
sg[i]=j;
break;
}
}
}
int main()
{
int m;
while(~scanf("%d",&k)&&k)
{
memset(fa,0,sizeof(fa));
for(int i=0;i<k;i++)
scanf("%d",&fa[i]);
getsg(N);
char s[111];
scanf("%d",&m);
for(int i=0;i<m;i++)
{
int h,l,sum=0;
scanf("%d",&l);
while(l--)
{
scanf("%d",&h);
sum^=sg[h];
}
if(sum)
s[i]='W';
else s[i]='L';
}
s[m]='\0';
printf("%s\n",s);
}
return 0;
}
HDU1536 S-Nim(sg函数变换规则)的更多相关文章
- hdu 3032 Nim or not Nim? sg函数 难度:0
Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU1536&&POJ2960 S-Nim(SG函数博弈)
S-Nim Time Limit: 2000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Submit Status ...
- 多校6 1003 HDU5795 A Simple Nim (sg函数)
思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...
- HDU 3032 Nim or not Nim (sg函数)
加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...
- hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)
Nim or not Nim? Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
- HDU 1729 Stone Game 石头游戏 (Nim, sg函数)
题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...
- HDU 3032 Nim or not Nim?(sg函数)
题目链接 暴力出来,竟然眼花了以为sg(i) = i啊....看表要认真啊!!! #include <cstdio> #include <cstring> #include & ...
- S-Nim POJ - 2960 Nim + SG函数
Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...
- [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数
Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...
随机推荐
- 用Java实现几种常见的排序算法
用Java语言实现的各种排序,包括插入排序.冒泡排序.选择排序.Shell排序.快速排序.归并排序.堆排序.SortUtil等. 插入排序: package org.rut.util.algorith ...
- CM记录-迁移JournalNode和Service Monitor超时解决方案
1.迁移JournalNode节点 当你在HDFS服务中新加入一个JournalNode角色时,JournalNode角色需要的数据目录是没有被创建的.但你启用HDFS的HA后,NameNode必须需 ...
- jQuery基础 (一)——样式篇(认识jQuery)
一.认识 //等待dom元素加载完毕. $(document).ready(function(){ alert("Hello World!"); }); 二.jQuery对象与DO ...
- elementUI 表格设置表头样式
eader-row-class-name 表头行的 className 的回调方法,也可以使用字符串为所有表头行设置一个固定的 className. Function({row, rowIndex}) ...
- Js/Jquery 关闭 离开或刷新当前页面时提醒,和执行解绑取消提醒
如图,现在的 cnblogs 或者QQ邮箱编辑页面,刷新.关闭提醒: <script src="../../Common/Js/jquery-1.8.1.min.js"> ...
- 9 Web开发——springmvc自动配置原理
官方文档目录: https://docs.spring.io/spring-boot/docs/2.1.0.RELEASE/reference/htmlsingle/#boot-features-sp ...
- CF912E Prime Gift
传送门 看到\(n\)只有16,可以把这些质数分成两半,然后预处理出这些数相乘得出的小于\(10^{18}\)的所有数,排个序,然后二分最终答案,再用两个指针从前往后和从后往前扫,进行\(two-po ...
- IO流总结笔记一
IO流继承关系图 IO概述 IO流是用来处理设备上数据的输入输出. 具体设备有:硬盘,内存,键盘录入等等. IO流的具体分类: 1,根据处理的数据类型不同分为:字节流和字符流,字节流读取的最小单位 ...
- Android开发技巧——ViewPager加View情况封装PagerAdapter的实现类
ViewPager是Android的support库中的一个控件. ViewPager + Fragment的使用,已经有FragmentAdapter的实现可以帮助我们快速进行开发了: ViewPa ...
- IOS中的用户安全
用户安全: 原则:在网络传输过程中,关于用户的密码是不能传递明文的,需要通过加密之后进行传递, 一般采用的加密技术是: (1)md5+盐 (2)hmac+md5 (3)hmac+md5+时间戳 这 ...