S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 9829    Accepted Submission(s): 4038

Problem Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Input

Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.

Output

For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.

Sample Input

2 2 5//两种取法,只能取2或5个

3//例数

2 5 12//例一:两堆石子个数分别为5和12

3 2 4 7

4 2 3 7 12

5 1 2 3 4 5//五种取法。。。。

3

2 5 12

3 2 4 7

4 2 3 7 12

0

Sample Output

LWW

WWL

#include<iostream>
#include<string.h>
using namespace std;
const int N=10001;
int k,sg[N],fa[111];
void getsg(int n)
{
bool mex[N];
for(int i=1;i<=n;i++)
{
memset(mex,0,sizeof(mex));
for(int j=0;j<k;j++)
if(i>=fa[j])
mex[sg[i-fa[j]]]=1;
for(int j=0;;j++)
if(!mex[j])
{
sg[i]=j;
break;
}
}
}
int main()
{
int m;
while(~scanf("%d",&k)&&k)
{
memset(fa,0,sizeof(fa));
for(int i=0;i<k;i++)
scanf("%d",&fa[i]);
getsg(N);
char s[111];
scanf("%d",&m);
for(int i=0;i<m;i++)
{
int h,l,sum=0;
scanf("%d",&l);
while(l--)
{
scanf("%d",&h);
sum^=sg[h];
}
if(sum)
s[i]='W';
else s[i]='L';
}
s[m]='\0';
printf("%s\n",s);
}
return 0;
}

HDU1536 S-Nim(sg函数变换规则)的更多相关文章

  1. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU1536&&POJ2960 S-Nim(SG函数博弈)

    S-Nim Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  3. 多校6 1003 HDU5795 A Simple Nim (sg函数)

    思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...

  4. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

  5. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  6. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

  7. HDU 3032 Nim or not Nim?(sg函数)

    题目链接 暴力出来,竟然眼花了以为sg(i) = i啊....看表要认真啊!!! #include <cstdio> #include <cstring> #include & ...

  8. S-Nim POJ - 2960 Nim + SG函数

    Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...

  9. [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数

    Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...

随机推荐

  1. 增加/删除临时IP地址

    启动一个down状态的网卡并设置临时IP: ifconfig eth3 172.168.1.100 netmask 255.255.255.0 up 删除网卡的临时IP地址: ip addr del ...

  2. Linux下网卡绑定模式

    Linux bonding驱动一共提供了7种模式,它们分别是:balance-rr .active-backup.balance-xor.broadcast.802.3ad.balance-tlb.b ...

  3. nginx的负载均衡配置,常用策略

    场景:nginx是一款非常优秀的负载均衡服务器,小巧而且性能强悍,中小型企业的首选. 下面介绍nginx的负载均衡的几种常见的配置以及优缺点 第一种:轮询(默认) 优点:实现简单 缺点:不考虑每台服务 ...

  4. JAVA记录-Mybatis介绍

    1.什么是 MyBatis ? MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyB ...

  5. jQuery实现滚动监听

    1.设计思路 1)获取窗口滚动高度: 2)获取附加导航栏: 3)获取导航栏下的所有li: 4)通过相同class获取所有监听元素:(此例中为jumbotron巨幕) 5)遍历所有监听元素,若当前元素距 ...

  6. SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)

    http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...

  7. Linux 查看文件编码

    查看某个文件的编码格式:使用 vi 编辑器 打开文件: 按 Esc 输入 ” : set fileencoding “ 就会显示出来 文件的编码格式 : set fileencoding

  8. Linux - 网络检测

    linux 利用bmon/nload/iftop/vnstat/iptraf实时查看网络带宽状况 .添加yum源方便安装bmon # rpm -Uhv http://apt.sw.be/redhat/ ...

  9. python中enumerate()的用法

    enumerate()函数用于遍历一个可遍历的数据对象(如列表.元组或字符串等)的索引和其对应的元素,一般用于for循环中. enumerate(sequence, [start=0]) sequen ...

  10. 2、Saltstack的数据系统

      一.Grains grains是salt用来收集minion端底层系统信息的接口.比如,操作系统type.域名 .IP地址.内存及其他相关系统属性信息等.存储在minion端,用于保存minion ...