[CF776D]The Door Problem
思路:
并查集维护每个开关的状态on[i]和off[i] 。
假设灯L由开关S1和S2控制。
如果开关是亮的,则S1和S2的状态相反;
如果开关是灭的,则S1和S2的状态相同。
当一个开关状态已知时,可以得知另一个开关的状态,合并。
如果on[i]和off[i]在同一个集合就无解。
时间复杂度:O((n+m)α(n))。
当然也可以二分图判定。
#include<cstdio>
#define on(i) i
#define off(i) i+m
const int M=,N=;
class DisjointSet {
private:
int anc[M<<];
int Find(const int x) {
return (x==anc[x])?x:(anc[x]=Find(anc[x]));
}
public:
DisjointSet(const int m) {
for(int i=;i<=(m<<);i++) {
anc[i]=i;
}
}
void Union(const int x,const int y) {
anc[Find(x)]=Find(y);
}
bool isConnected(const int x,const int y) {
return Find(x)==Find(y);
}
};
int r[N];
int l[N][]={};
int main() {
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) {
scanf("%d",&r[i]);
}
for(int i=;i<=m;i++) {
int x;
scanf("%d",&x);
while(x--) {
int d;
scanf("%d",&d);
l[d][l[d][]?:]=i;
}
}
DisjointSet s(m);
for(int i=;i<=n;i++) {
if(!r[i]) {
s.Union(on(l[i][]),off(l[i][]));
s.Union(on(l[i][]),off(l[i][]));
}
else {
s.Union(on(l[i][]),on(l[i][]));
s.Union(off(l[i][]),off(l[i][]));
}
}
for(int i=;i<=m;i++) {
if(s.isConnected(on(i),off(i))) {
puts("NO");
return ;
}
}
puts("YES");
return ;
}
[CF776D]The Door Problem的更多相关文章
- CF776D The Door Problem[2-SAT]
翻译 对于一扇门,如果是关的,那么他必须使用其中一个开关开开来,如果是开的,要么使用两个开关,要么啥都不做.这样,每扇门恰好对应两种状态,要选一个. 考虑用2-SAT模型解决.连边的话是对于一个机关, ...
- CF776D The Door Problem [2sat]
考虑 \(\texttt{2-SAT}\) 首先每个门 \(i\) 都有一个初始状态 \(a_i\) 题目条件每个门只被两个开关控制,那么很显然的 \(\texttt{2-SAT}\) 用 \(b_{ ...
- 1199 Problem B: 大小关系
求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...
- No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.
Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...
- C - NP-Hard Problem(二分图判定-染色法)
C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144 ...
- Time Consume Problem
I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
随机推荐
- 如何读取Linux键值,输入子系统,key,dev/input/event,dev/event,C语言键盘【转】
转自:https://blog.csdn.net/lanmanck/article/details/8423669 相信各位使用嵌入式的都希望直接读取键值,特别是芯片厂家已经提供input驱动的情况下 ...
- linux软链接和硬链接的区别
硬链接:ln 3.txt 4 相当于把源文件复制了一份 软连接:ln -s 3.txt 5 相当于快捷方式 改动源文件4.5同时更新,删除3.txt ,5不存在,4存在的.
- Html5 序列帧动画
<!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- quart源码阅读(一)
def run( self,host: str='127.0.0.1',port: int=5000,ssl: Optional[SSLContext]=None,debug: Optional[bo ...
- sklearn 岭回归
可以理解的原理描述: [机器学习]岭回归(L2正则) 最小二乘法与岭回归的介绍与对比 多重共线性的解决方法之——岭回归与LASSO
- 在Android开发中,定时执行任务的3种实现方法
在Android开发中,定时执行任务的3种实现方法: 一.采用Handler与线程的sleep(long)方法(不建议使用,Java的实现方式)二.采用Handler的postDelayed(Runn ...
- vue系列之vue-resource
vue-resource是Vue.js的一款插件,它可以通过XMLHttpRequest或JSONP发起请求并处理响应.也就是说,$.ajax能做的事情,vue-resource插件一样也能做到,而且 ...
- 搭建ssh框架项目(四)
一.创建控制层 (1)创建VO值对象,对应页面表单的属性值 package com.cppdy.ssh.web.form; /** * VO值对象,对应页面表单的属性值 * VO对象与PO对象的关系: ...
- Lavarel - 模块间复用代码
代码复用在项目中早晚会遇到,这不在用 Laravel 给博客增加 Feed 订阅功能 就到了需要将生成网页 description 的函数提取出来,在文章显示与 Feed 生成的两个 Controll ...
- HTTP常见响应状态码
200 : (OK) 服务器已成功处理了请求. 通常,这表示服务器提供了请求的网页. 201 : (Created) 请求成功并且服务器创建了新的资源. 301 : (Moved Permanentl ...