[CF776D]The Door Problem
思路:
并查集维护每个开关的状态on[i]和off[i] 。
假设灯L由开关S1和S2控制。
如果开关是亮的,则S1和S2的状态相反;
如果开关是灭的,则S1和S2的状态相同。
当一个开关状态已知时,可以得知另一个开关的状态,合并。
如果on[i]和off[i]在同一个集合就无解。
时间复杂度:O((n+m)α(n))。
当然也可以二分图判定。
#include<cstdio>
#define on(i) i
#define off(i) i+m
const int M=,N=;
class DisjointSet {
private:
int anc[M<<];
int Find(const int x) {
return (x==anc[x])?x:(anc[x]=Find(anc[x]));
}
public:
DisjointSet(const int m) {
for(int i=;i<=(m<<);i++) {
anc[i]=i;
}
}
void Union(const int x,const int y) {
anc[Find(x)]=Find(y);
}
bool isConnected(const int x,const int y) {
return Find(x)==Find(y);
}
};
int r[N];
int l[N][]={};
int main() {
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) {
scanf("%d",&r[i]);
}
for(int i=;i<=m;i++) {
int x;
scanf("%d",&x);
while(x--) {
int d;
scanf("%d",&d);
l[d][l[d][]?:]=i;
}
}
DisjointSet s(m);
for(int i=;i<=n;i++) {
if(!r[i]) {
s.Union(on(l[i][]),off(l[i][]));
s.Union(on(l[i][]),off(l[i][]));
}
else {
s.Union(on(l[i][]),on(l[i][]));
s.Union(off(l[i][]),off(l[i][]));
}
}
for(int i=;i<=m;i++) {
if(s.isConnected(on(i),off(i))) {
puts("NO");
return ;
}
}
puts("YES");
return ;
}
[CF776D]The Door Problem的更多相关文章
- CF776D The Door Problem[2-SAT]
翻译 对于一扇门,如果是关的,那么他必须使用其中一个开关开开来,如果是开的,要么使用两个开关,要么啥都不做.这样,每扇门恰好对应两种状态,要选一个. 考虑用2-SAT模型解决.连边的话是对于一个机关, ...
- CF776D The Door Problem [2sat]
考虑 \(\texttt{2-SAT}\) 首先每个门 \(i\) 都有一个初始状态 \(a_i\) 题目条件每个门只被两个开关控制,那么很显然的 \(\texttt{2-SAT}\) 用 \(b_{ ...
- 1199 Problem B: 大小关系
求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...
- No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.
Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...
- C - NP-Hard Problem(二分图判定-染色法)
C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144 ...
- Time Consume Problem
I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
随机推荐
- Linux相关指令和操作
环境:Ubuntu16.04 1.安装ipython notebook 安装这个软件,必须安装anaconda: 注意几点:1.添加环境变量在安装的时候会自动询问你是否添加: 2.bash命令中应该和 ...
- Linux设备驱动之Ioctl控制【转】
转自:http://www.cnblogs.com/geneil/archive/2011/12/04/2275372.html 大部分驱动除了需要具备读写设备的能力之外,还需要具备对硬件控制的能力. ...
- 编译时bad substitution的解决办法
由于使用的使用的编译器不同导致, 需要使用shell为 #!/bin/bash 即可.
- 转载:为什么选择Nginx(1.2)《深入理解Nginx》(陶辉)
原文:https://book.2cto.com/201304/19610.html 为什么选择Nginx?因为它具有以下特点: (1)更快 这表现在两个方面:一方面,在正常情况下,单次请求会得到更快 ...
- [转] MachingLearning中的距离相似性计算以及python实现
参考:https://blog.csdn.net/gamer_gyt/article/details/75165842#t16 https://blog.csdn.net/ymlgrss/artic ...
- LeetCode(40):组合总和 II
Medium! 题目描述: 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数 ...
- windows service程序的Environment.CurrentDirectory路径
当前工作目录Environment.CurrentDirectory,对于winform程序,其是在程序放置的目录里, 而windows service的Environment.CurrentDire ...
- 步步为营-54-DOM
说明:DOM document object model 文档对象模型.将所有的标记加载到内存中,以树形结构处理 1.1 使用JavaScript操作DOM,主要包括两个部分 Browser对象:BO ...
- 遍历集合的Iterator删除其中的元素
package list; import java.util.LinkedList; /* * 遍历集合的时候删除其中的元素 从后往前删,每次都删除的是最后一个元素,不涉及移位 */public cl ...
- HttpClient + Testng实现接口测试
HttpClient教程 : https://www.yeetrack.com/?p=779 一,所需要的环境: 1,testng .httpclient和相关的依赖包 二.使用HttpClient登 ...