思路:

并查集维护每个开关的状态on[i]和off[i] 。
假设灯L由开关S1和S2控制。
如果开关是亮的,则S1和S2的状态相反;
如果开关是灭的,则S1和S2的状态相同。
当一个开关状态已知时,可以得知另一个开关的状态,合并。
如果on[i]和off[i]在同一个集合就无解。
时间复杂度:O((n+m)α(n))。
当然也可以二分图判定。

 #include<cstdio>
#define on(i) i
#define off(i) i+m
const int M=,N=;
class DisjointSet {
private:
int anc[M<<];
int Find(const int x) {
return (x==anc[x])?x:(anc[x]=Find(anc[x]));
}
public:
DisjointSet(const int m) {
for(int i=;i<=(m<<);i++) {
anc[i]=i;
}
}
void Union(const int x,const int y) {
anc[Find(x)]=Find(y);
}
bool isConnected(const int x,const int y) {
return Find(x)==Find(y);
}
};
int r[N];
int l[N][]={};
int main() {
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) {
scanf("%d",&r[i]);
}
for(int i=;i<=m;i++) {
int x;
scanf("%d",&x);
while(x--) {
int d;
scanf("%d",&d);
l[d][l[d][]?:]=i;
}
}
DisjointSet s(m);
for(int i=;i<=n;i++) {
if(!r[i]) {
s.Union(on(l[i][]),off(l[i][]));
s.Union(on(l[i][]),off(l[i][]));
}
else {
s.Union(on(l[i][]),on(l[i][]));
s.Union(off(l[i][]),off(l[i][]));
}
}
for(int i=;i<=m;i++) {
if(s.isConnected(on(i),off(i))) {
puts("NO");
return ;
}
}
puts("YES");
return ;
}

[CF776D]The Door Problem的更多相关文章

  1. CF776D The Door Problem[2-SAT]

    翻译 对于一扇门,如果是关的,那么他必须使用其中一个开关开开来,如果是开的,要么使用两个开关,要么啥都不做.这样,每扇门恰好对应两种状态,要选一个. 考虑用2-SAT模型解决.连边的话是对于一个机关, ...

  2. CF776D The Door Problem [2sat]

    考虑 \(\texttt{2-SAT}\) 首先每个门 \(i\) 都有一个初始状态 \(a_i\) 题目条件每个门只被两个开关控制,那么很显然的 \(\texttt{2-SAT}\) 用 \(b_{ ...

  3. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  4. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  5. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  6. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  7. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  8. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

随机推荐

  1. 如何读取Linux键值,输入子系统,key,dev/input/event,dev/event,C语言键盘【转】

    转自:https://blog.csdn.net/lanmanck/article/details/8423669 相信各位使用嵌入式的都希望直接读取键值,特别是芯片厂家已经提供input驱动的情况下 ...

  2. linux软链接和硬链接的区别

    硬链接:ln 3.txt 4         相当于把源文件复制了一份 软连接:ln -s 3.txt 5 相当于快捷方式 改动源文件4.5同时更新,删除3.txt ,5不存在,4存在的.

  3. Html5 序列帧动画

    <!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...

  4. quart源码阅读(一)

    def run( self,host: str='127.0.0.1',port: int=5000,ssl: Optional[SSLContext]=None,debug: Optional[bo ...

  5. sklearn 岭回归

    可以理解的原理描述: [机器学习]岭回归(L2正则) 最小二乘法与岭回归的介绍与对比 多重共线性的解决方法之——岭回归与LASSO

  6. 在Android开发中,定时执行任务的3种实现方法

    在Android开发中,定时执行任务的3种实现方法: 一.采用Handler与线程的sleep(long)方法(不建议使用,Java的实现方式)二.采用Handler的postDelayed(Runn ...

  7. vue系列之vue-resource

    vue-resource是Vue.js的一款插件,它可以通过XMLHttpRequest或JSONP发起请求并处理响应.也就是说,$.ajax能做的事情,vue-resource插件一样也能做到,而且 ...

  8. 搭建ssh框架项目(四)

    一.创建控制层 (1)创建VO值对象,对应页面表单的属性值 package com.cppdy.ssh.web.form; /** * VO值对象,对应页面表单的属性值 * VO对象与PO对象的关系: ...

  9. Lavarel - 模块间复用代码

    代码复用在项目中早晚会遇到,这不在用 Laravel 给博客增加 Feed 订阅功能 就到了需要将生成网页 description 的函数提取出来,在文章显示与 Feed 生成的两个 Controll ...

  10. HTTP常见响应状态码

    200 : (OK) 服务器已成功处理了请求. 通常,这表示服务器提供了请求的网页. 201 : (Created) 请求成功并且服务器创建了新的资源. 301 : (Moved Permanentl ...