题解

………………………………………………

我莫不是一个智障吧

我把testdata的编号

当成数据组数读进来

我简直有毒

以为哪里写错了自闭了好久

实际上这题很简单,只要愉悦地开个启发式合并,然后每次暴力修改一个点的根缀主席树和倍增lca数组就行

复杂度\(n \log^2 n\)

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define MAXN 80005
#define eps 1e-10
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,Q;
int val[MAXN],w[MAXN],cnt,fa[MAXN][20],belong[MAXN],siz[MAXN],dep[MAXN];
struct node {
int sum,lc,rc;
}tr[MAXN * 200];
struct Enode {
int to,next;
}E[MAXN * 2];
int Ncnt,rt[MAXN],sumE,head[MAXN];
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
int getfa(int u) {
return belong[u] == u ? u : belong[u] = getfa(belong[u]);
}
void Insert(const int &x,int &y,int l,int r,int v) {
y = ++Ncnt;
tr[y] = tr[x];
++tr[y].sum;
if(l == r) return;
int mid = (l + r) >> 1;
if(v <= mid) Insert(tr[x].lc,tr[y].lc,l,mid,v);
else Insert(tr[x].rc,tr[y].rc,mid + 1,r,v);
}
void rebuild(int u,int f) {
dep[u] = dep[f] + 1;
Insert(rt[f],rt[u],1,cnt,w[u]);
fa[u][0] = f;
for(int i = 1 ; i <= 18 ; ++i) {
fa[u][i] = fa[fa[u][i - 1]][i - 1];
}
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != f) rebuild(v,u);
}
}
void Init() {
Ncnt = 0;sumE = 0;
memset(fa,0,sizeof(fa));
memset(rt,0,sizeof(rt));
memset(head,0,sizeof(head));
memset(dep,0,sizeof(dep));
read(N);read(M);read(Q);
for(int i = 1 ; i <= N ; ++i) {
read(w[i]);val[i] = w[i];
}
sort(val + 1,val + N + 1);
cnt = unique(val + 1,val + N + 1) - val - 1;
for(int i = 1 ; i <= N ; ++i) {
w[i] = lower_bound(val + 1,val + cnt + 1,w[i]) - val;
}
for(int i = 1 ; i <= N ; ++i) belong[i] = i,siz[i] = 1;
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
add(u,v);add(v,u);
siz[getfa(v)] += siz[getfa(u)];
belong[getfa(u)] = getfa(v);
}
for(int i = 1 ; i <= N ; ++i) {
if(i == belong[i]) rebuild(i,0);
}
}
int lca(int u,int v) {
if(dep[u] < dep[v]) swap(u,v);
int l = 18;
while(dep[u] > dep[v]) {
if(dep[fa[u][l]] >= dep[v]) u = fa[u][l];
--l;
}
if(u == v) return u;
l = 18;
while(fa[u][0] != fa[v][0]) {
if(fa[u][l] != fa[v][l]) {
u = fa[u][l];
v = fa[v][l];
}
--l;
}
return fa[u][0];
}
int Query(int u,int v,int f,int k) {
int L = 1,R = cnt;
int t = w[f];
u = rt[u],v = rt[v],f = rt[f];
while(L < R) {
int mid = (L + R) >> 1;
int s = tr[tr[u].lc].sum - tr[tr[f].lc].sum + tr[tr[v].lc].sum - tr[tr[f].lc].sum;
if(t >= L && t <= mid) ++s;
if(s < k) {
k -= s;
L = mid + 1;
u = tr[u].rc;v = tr[v].rc;f = tr[f].rc;
}
else {
R = mid;
u = tr[u].lc;v = tr[v].lc;f = tr[f].lc;
}
}
return L;
}
void Solve() {
char op[5];int x,y,k;
int lastans = 0;
for(int i = 1 ; i <= Q ; ++i) {
scanf("%s",op + 1);
read(x);read(y);
x ^= lastans;y ^= lastans;
if(op[1] == 'L') {
int p = getfa(x),q = getfa(y);
if(siz[p] > siz[q]) {swap(x,y);swap(p,q);}
belong[p] = q;siz[q] += siz[p];
rebuild(x,y);
add(x,y);add(y,x);
}
else {
read(k);
k ^= lastans;
out(lastans = val[Query(x,y,lca(x,y),k)]);enter;
}
//out(i);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
int T;
read(T);
Init();
Solve();
}

【BZOJ】3123: [Sdoi2013]森林的更多相关文章

  1. BZOJ 3123: [Sdoi2013]森林 [主席树启发式合并]

    3123: [Sdoi2013]森林 题意:一个森林,加边,询问路径上k小值.保证任意时刻是森林 LCT没法搞,树上kth肯定要用树上主席树 加边?启发式合并就好了,小的树dfs重建一下 注意 测试点 ...

  2. bzoj 3123: [Sdoi2013]森林(45分暴力)

    3123: [Sdoi2013]森林 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4184  Solved: 1235[Submit][Status ...

  3. Bzoj 3123: [Sdoi2013]森林(主席树+启发式合并)

    3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当前 ...

  4. ●BZOJ 3123 [Sdoi2013]森林

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3123 题解: 主席树,在线,启发式合并 简单版(只有询问操作):[2588: Spoj 10 ...

  5. BZOJ 3123 [SDOI2013] 森林 - 启发式合并 主席树

    Description 给你一片森林, 支持两个操作: 查询$x$到$y$的$K$大值,  连接两棵树中的两个点 Solution 对每个节点$x$动态开权值线段树, 表示从$x$到根节点路径上权值出 ...

  6. BZOJ 3123 SDOI2013 森林

    首先对于查询操作就是裸的COT QAQ 在树上DFS建出主席树就可以了 对于连接操作,我们发现并没有删除 所以我们可以进行启发式合并,每次将小的树拍扁插入大的树里并重构即可 写完了之后第一个和第二个点 ...

  7. bzoj 3123 [Sdoi2013]森林(主席树,lca,启发式合并)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  8. bzoj 3123 [Sdoi2013]森林(主席树+启发式合并+LCA)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  9. 3123: [Sdoi2013]森林

    3123: [Sdoi2013]森林 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3336  Solved: 978[Submit][Status] ...

随机推荐

  1. hive vs hbase

    HIVE和HBASE区别 两者分别是什么? Apache Hive是一个构建在Hadoop基础设施之上的数据仓库.通过Hive可以使用HQL语言查询存放在HDFS上的数据.HQL是一种类SQL语言,这 ...

  2. webkitAnimationEnd事件与webkitTransitionEnd事件

    写一个焦点图demo,css3动画完成以后要把它隐藏掉,这里会用到css3的事件,以前没有接触过,结果查了一下发现这是一片新天地啊,而且里面还有好多坑,比如重复动画多次触发什么的.anyway,我还是 ...

  3. Linux下删除命令 硬盘空间查看... 常用命令

    (此命令请慎重使用) 使用rm -rf命令即可. 使用rm -rf 目录名字 命令即可 -r 就是向下递归,不管有多少级目录,一并删除-f 就是直接强行删除,不作任何提示的意思    (警告:不作任何 ...

  4. STM32建立基本项目

    1.下载固件库解压 2.Keil建立项目,项目下建立三个文件夹3.各目录下从固件库中拷贝对应的目录 4.修改main.c文件 5.修改C++ 6.修改Include 7,编译.

  5. ubuntu18.04使用sudo时反应时间长

    一.查看/etc/sudoer这个文件,是否有当前用户,若无,请联系 管理员或者是通过root用户添加 二.用hostname命令查看自己的主机名 三.添加自己的主机名到/etc/hosts文件中

  6. JS浮点数运算Bug的解决办法

    方法一:重写浮点运算的函数 //除法函数,用来得到精确的除法结果 //说明:javascript的除法结果会有误差,在两个浮点数相除的时候会比较明显.这个函数返回较为精确的除法结果. //调用:acc ...

  7. 使用PowerMockito和Mockito进行模拟测试,包括静态方法测试,私有方法测试等,以及方法执行的坑或者模拟不成功解决

    依赖:这个很重要,不同版本用法也有点区别: <dependency> <groupId>org.mockito</groupId> <artifactId&g ...

  8. 搭建Modelsim SE仿真环境-使用do文件仿真

    本章我们介绍仿真环境搭建是基于Modelsim SE的.Modelsim有很多版本,比如说Modelsim-Altera,但是笔者还是建议大家使用Modelsim-SE,Modelsim-Altera ...

  9. Linux inotify功能及实现原理【转】

    转自:http://blog.csdn.net/myarrow/article/details/7096460 1. inotify主要功能 它是一个内核用于通知用户空间程序文件系统变化的机制. 众所 ...

  10. jQuery 实现添加表格行,删除行,调用日期控件

    $(function () { getdatepicker(); getdatetimepicker(); }); $(document).on('click','#addTable',addTr); ...