solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

# caffe train --solver=*_slover.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

接下来,我们对每一行进行详细解译:

net: "examples/mnist/lenet_train_test.prototxt"

设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

接下来第二行:

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

    • - fixed:   保持base_lr不变.
    • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
    • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
    • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
    • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                 stepvalue值变化
    • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
    • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

multistep示例:

base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500

接下来的参数:

momentum :0.9

上一次梯度更新的权重,具体可参看下一篇文章。

type: SGD

优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

weight_decay: 0.0005

权重衰减项,防止过拟合的一个参数。

display: 100

每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 20000

最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

solver_mode: CPU

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

caffe slover文件详解的更多相关文章

  1. web.xml文件详解

      web.xml文件详解 Table of Contents 1 listener. filter.servlet 加载顺序 2 web.xml文件详解 3 相应元素配置 1 listener. f ...

  2. Linux中/proc目录下文件详解

    转载于:http://blog.chinaunix.net/uid-10449864-id-2956854.html Linux中/proc目录下文件详解(一)/proc文件系统下的多种文件提供的系统 ...

  3. SUBLIME TEXT 2 设置文件详解

    SUBLIME TEXT 2 设置文件详解 Preferences.sublime-settings文件: // While you can edit this file, it’s best to ...

  4. [转]AndroidManifest.xml文件详解

    转自:http://www.cnblogs.com/greatverve/archive/2012/05/08/AndroidManifest-xml.html AndroidManifest.xml ...

  5. delphi 资源文件详解

    delphi资源文件详解 一.引子: 现在的Windows应用程序几乎都使用图标.图片.光标.声音等,我们称它们为资源(Resource).最简单的使用资源的办法是把这些资源的源文件打入软件包,以方便 ...

  6. VSFTPD全攻略(/etc/vsftpd/vsftpd.conf文件详解)

    /etc/vsftpd/vsftpd.conf文件详解,分好类,方便大家查找与学习 #################匿名权限控制############### anonymous_enable=YE ...

  7. jni.h头文件详解二

    作者:左少华 博客:http://blog.csdn.net/shaohuazuo/article/details/42932813 转载请注明出处:http://blog.csdn.net/shao ...

  8. 【转】 jni.h头文件详解(二)

    原文网址:http://blog.csdn.net/shaohuazuo/article/details/42932813 作者:左少华 博客:http://blog.csdn.net/shaohua ...

  9. Android.mk文件详解(转)

    源:Android.mk文件详解 从对Makefile一无所知开始,折腾了一个多星期,终于对Android.mk有了一个全面些的了解.了解了标准的Makefile后,发现Android.mk其实是把真 ...

随机推荐

  1. 1.7Oob 构造方法

    1)构造方法 在创建对象后不用调用会自动执行,如无自定义构造会默认执行没有参数没有,且方法体中没有任何语句的, 2)构造方法在main入口开始后就执行

  2. angular 使用dialog的经验

    利用angular在近期的工作中使用了dialog的方式,总结下经验 由于dialog显示的内容不同,需要用到angular 的ng-include加载不同的文件1 dialog利用指令的方式 app ...

  3. linux 之awk

    简介 awk是一个强大的文本分析工具,相对grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格 为默认分隔符将每行切片,切开的部分再 ...

  4. OCR技术(光学字符识别)

    什么是OCR? OCR英文全称是optical character recognition,中文叫光学字符识别.它是利用光学技术和计算机技术把印在或者写在纸上的 文字读取出来,并转换成一种计算机能够接 ...

  5. iOS-原生纯代码约束总结(一)之 AutoresizingMask

    一,概述 iOS有两大自动布局利器:autoresizing 和 autolayout(autolayout是IOS6以后新增).autoresizing是UIView的属性,一直存在,使用也比较简单 ...

  6. [daily][dpdk] 内核模块(网卡驱动)无法卸载

    由于程序的异常退出, 内核的引用计数没有被清除(我猜的). 所以驱动不能被卸载掉, 强制也不行. 如下: [root@localhost ~]# insmod /opt/scorpion/KingKo ...

  7. Flink - ShipStrategyType

      对于DataStream,可以选择如下的Strategy, /** * Sets the partitioning of the {@link DataStream} so that the ou ...

  8. LeetCode 806 Number of Lines To Write String 解题报告

    题目要求 We are to write the letters of a given string S, from left to right into lines. Each line has m ...

  9. Requirejs 使用

    代码地址 参考地址1 参考地址2 一.不依赖其他模块的module创建 创建math的module // math.js define(function (){ var add = function ...

  10. Spring MVC中前端控制器拦截问题

    <!-- 前端控制器 --> <servlet> <servlet-name>ssm</servlet-name> <servlet-class& ...