pandas 是 python 的数据分析处理库
import pandas as pd

1、读取CSV、TXT文件

foodinfo = pd.read_csv("pandas_study.csv", encoding = "utf-8")

2、查看前N条、后N条信息

foodinfo.head(N)
foodinfo.tail(N)

3、查看数据框的格式,是DataFrame还是ndarray

print(type(foodinfo))
# 结果:<class 'pandas.core.frame.DataFrame'>

4、查看有哪些列

foodinfo.columns

5、查看有几行几列

foodinfo.shape

6、打印某一行、某几行数据

foodinfo.loc[0]
foodinfo.loc[0:2]
foodinfo.loc[[2, 5, 10]] #注意里面是一个数组

7、打印某一列、某几列数据

foodinfo["dti"]
foodinfo[["int_rate", "dti"]] #注意里面是一个数组
# 或者:
columns = ["int_rate", "dti"]
foodinfo[columns]

8、打印所有列的数据类型

foodinfo.dtypes

9、对列的一些相关操作

col_columns = foodinfo.columns.tolist()
new_columus = [] for c in col_columns:
if c.endswith("s"):
new_columus.append(c)
print(c) foodinfo[new_columus]

10、加减乘除:将每行都乘以100(加 减 乘 除 一样)

foodinfo[["int_rate", "dti"]] * 100

11、增加一列

new_col = foodinfo["int_rate"] * 100
foodinfo["new_col"]= new_col

12、列之间的运算

foodinfo["dti"] * foodinfo["int_rate"]

13、查看列的最大值、最小值、平均值

foodinfo["int_rate"].max()
foodinfo["int_rate"].min()
foodinfo["int_rate"].mean()

14、按某个字段排序 - 升序

# inplace是否新建一个dataframe,True不需要
foodinfo.sort_values("int_rate_one", inplace = True) # 按某个字段排序 - 降序
foodinfo.sort_values("int_rate_one", inplace = True, ascending = False)

15、查看数据框的一些属性:最大、最小、均值、四分位数等

foodinfo.describe()

16、空值相关的操作

pin = foodinfo["pin"]
pin_isnull = pd.isnull(pin) # 查看所有空值
pin_isnull_list = foodinfo[pin_isnull] # 找出所有为空值的行
len(pin_isnull_list) # 空值的个数

17、缺失值相关操作

# 简单的处理办法就是过滤掉null值
books = foodinfo["life_cycle_books"]
book_isnull = pd.isnull(books)
book_list_isnull = foodinfo["life_cycle_books"][book_isnull == False]
mean = sum(book_list_isnull) / len(book_list_isnull) # 计算平均值

18、根据条件打印某列数据

foodinfo[foodinfo["life_cycle_books"] == 1]

19、数据透视表

import numpy as np
# index:要透视的列
# values:要比较的关系列
# aggfunc:具体的关系,默认值:np.mean
data_foodinfo = foodinfo.pivot_table(index = ["life_cycle_books", "potential_value_books"], values = "risk_level", aggfunc = np.mean)
print(data_foodinfo)

20、删除缺失值

# 所有行
na_foodinfo = foodinfo.dropna(axis = 1)
# 可以指定列
na_foodinfo = foodinfo.dropna(axis = 0, subset = ["life_cycle_books", "potential_value_books"])

21、自由取数据 如:取80行 life_cycle_books列

foodinfo.loc[80, "life_cycle_books"]

22、重新排索引

foodinfo.reset_index(drop = True)

23、自定义函数:返回空值个数

def count_null_columns(column):
column_null = pd.isnull(column)
list_null = column[column_null]
count_null = len(list_null)
return count_null
foodinfo.apply(count_null_columns)

24、Series

# pandas 三种数据结构
# Series
# DataFrame
# Panel
from pandas import Series

25、Series显示某一列数据

series_name = taitan["Name"]
series_name.values

26、定位某行某列

series_name = taitan["Name"]
series_age = taitan["Age"]
series_custom = Series(series_age.values, index = series_name)
series_custom[["Ahlin, Mrs. Johan (Johanna Persdotter Larsson)", "Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)"]]
# 说明:series_custom[""] 按列取 series_custom[[""]] 按行取

27、取5-10行数据,和上面一样:

series_custom[5: 10]

28、index变换

old_index = series_custom.index.tolist()
sort_index = sorted(old_index)
new_index = series_custom.reindex(sort_index)
print(new_index)

29、Series按索引和值排序的函数

sc1 = series_custom.sort_index()
print(sc1)
sc2 = series_custom.sort_values()
print(sc2)

30、Series 过滤

series_custom > 0.5
series_custom[series_custom > 0.5]
series_custom[(series_custom > 0.5) & (series_custom < 0.9)]
# 注:&、| 都是单符号

31、DataFrame

# Series是一行数据,DataFrame是多行数据
# DataFrame 可以看成由多个 Series 组成的
df = pd.read_csv("titanic_train.csv")

32、DataFrame的索引变换

# drop 是否新创建一个DF,True否 False是(表示还要保留Name这一列,否则一会无法进行计算)
df_name = df.set_index("Name", drop = False)

33、DataFrame查看某一类型的数据

types = df_name.dtypes
float_columns = types[types.values == "float64"].index
df_name[float_columns]

34、DataFrame求方差

float_df = df_name[float_columns]
float_df.apply(lambda x: np.std(x))

Python的Pandas库简述的更多相关文章

  1. Python之Pandas库常用函数大全(含注释)

    前言:本博文摘抄自中国慕课大学上的课程<Python数据分析与展示>,推荐刚入门的同学去学习,这是非常好的入门视频. 继续一个新的库,Pandas库.Pandas库围绕Series类型和D ...

  2. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

  3. Python的Numpy库简述

    numpy 是 python 的科学计算库import numpy as np 1.使用numpy读取txt文件 # dtype = "str":指定数据格式 # delimite ...

  4. Python的Matplotlib库简述

    Matplotlib 库是 python 的数据可视化库import matplotlib.pyplot as plt 1.字符串转化为日期 unrate = pd.read_csv("un ...

  5. Python之Pandas库学习(二):数据读写

    1. I/O API工具 读取函数 写入函数 read_csv to_csv read_excel to_excel read_hdf to_hdf read_sql to_sql read_json ...

  6. Python之Pandas库学习(一):简介

    官方文档 1. 安装Pandas windos下cmd:pip install pandas 导入pandas包:import pandas as pd 2. Series对象 带索引的一维数组 创建 ...

  7. python的pandas库学习笔记

    导入: import pandas as pd from pandas import Series,DataFrame 1.两个主要数据结构:Series和DataFrame (1)Series是一种 ...

  8. Python数据分析Pandas库之熊猫(10分钟二)

    pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分 ...

  9. Python数据分析Pandas库之熊猫(10分钟一)

    pandas熊猫10分钟教程 排序 df.sort_index(axis=0/1,ascending=False/True) df.sort_values(by='列名') import numpy ...

随机推荐

  1. pycharm平台下的Django教程(转)

    本文面向:有python基础,刚接触web框架的初学者. 环境:windows7   python3.5.1  pycharm专业版  Django 1.10版 pip3 一.Django简介 百度百 ...

  2. db2 查杀死锁进程

    db2 查杀死锁进命令 db2 get snapshot for locks on (需要snapshot的访问权限) db2 list applications db2 "force ap ...

  3. POJ 3974 - Palindrome - [字符串hash+二分]

    题目链接:http://poj.org/problem?id=3974 Time Limit: 15000MS Memory Limit: 65536K Description Andy the sm ...

  4. [No0000B1]ReSharper操作指南2/16-ReSharper食谱与特定于域的教程

    自动导入名称空间 有关更多信息,请参阅导入缺少命名空间. 每当您使用未添加using语句的命名空间中的类型时,ReSharper会为您提供在您所在文件的顶部添加相应的语句.这由在所使用的类型上方显示的 ...

  5. GMM-实现聚类的代码示例

    Matlab 代码: % GMM code function varargout = gmm(X, K_or_centroids) % input X:N-by-D data matrix % inp ...

  6. HDMI 接口及CEC信号

    HDMI 接口及CEC信号 2016年12月02日 14:16:38 King-Five 阅读数:16389 HDMI接口 HDMI(High Definition Multimedia Interf ...

  7. eclipse debug模式

    eclipse debug模式 1.怎样在Eclipse中设置断点 方法/步骤 1 首先打开工程项目 2 第一种是,把鼠标移动想要设置断点的行,在行号前面空白地方双击,就会出现断点 3 第二种是,在菜 ...

  8. Struts2验证框架_xml验证失败

    测试Struts2验证框架-->XML验证   启动tomcat后网页登录失败 Employee-validation.xml文件头如下: <!DOCTYPE validators PUB ...

  9. webstorm背景颜色更改

    一.file --> settings 二.editor-->color scheme  然后右边下拉选择 三.apply -- > ok

  10. vue安装调试器Vue.js devtools

    一. 打开https://github.com/vuejs/vue-devtools,进入gitlab.往下翻找到: 找到installation,选择以chrome的拓展方式安装. 二. 这边选择添 ...