一、进程与线程关系

一个进程至少包含一个线程。

二、线程基础

1、线程的状态

线程有5种状态,状态转换的过程如下图所示:

2、线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程”set”从后向前把所有元素改成1,而线程”print”负责从前往后读取列表并打印。那么,可能线程”set”开始改的时候,线程”print”便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如”set”要访问共享数据时,必须先获得锁定;如果已经有别的线程比如”print”获得锁定了,那么就让线程”set”暂停,也就是同步阻塞;等到线程”print”访问完毕,释放锁以后,再让线程”set”继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:

3、线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程”create”创建的。如果”set”或者”print” 在”create”还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是”set”和”print”将需要一个无限循环——他们不知道”create”什么时候会运行,让”create”在运行后通知”set”和”print”显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如”set”和”print”在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉”set” 和”print”条件已经有了,你们该起床干活了;然后”set”和”print”才继续运行。

线程与条件变量的交互如下图所示:

4、线程运行和阻塞的状态转换

最后看看线程运行和阻塞状态的转换

阻塞有三种情况: 
同步阻塞(锁定池)是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态; 
等待阻塞(等待池)是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定; 
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

四、threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法: 
threading.currentThread(): 返回当前的线程变量。 
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类: 
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

1、Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

# encoding: UTF-8
import threading # 方法1:将要执行的方法作为参数传给Thread的构造方法
def func():
print 'func() passed to Thread' t = threading.Thread(target=func)
t.start() # 方法2:从Thread继承,并重写run()
class MyThread(threading.Thread):
def run(self):
print 'MyThread extended from Thread' t = MyThread()
t.start()

构造方法: 
Thread(group=None, target=None, name=None, args=(), kwargs={}) 
group: 线程组,目前还没有实现,库引用中提示必须是None; 
target: 要执行的方法; 
name: 线程名; 
args/kwargs: 要传入方法的参数。

实例方法: 
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。 
get/setName(name): 获取/设置线程名。 
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。 
start(): 启动线程。 
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

# encoding: UTF-8
import threading
import time def context(tJoin):
print 'in threadContext.'
tJoin.start() # 将阻塞tContext直到threadJoin终止。
tJoin.join() # tJoin终止后继续执行。
print 'out threadContext.' def join():
print 'in threadJoin.'
time.sleep(1)
print 'out threadJoin.' # tJoin和tContext分别为两个不同的线程
tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,)) tContext.start()

运行结果:

 in threadContext.
in threadJoin.
out threadJoin.
out threadContext

2、Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法: 
Lock()

实例方法: 
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。 
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

# encoding: UTF-8
import threading
import time data = 0
lock = threading.Lock() def func():
global data
print '%s acquire lock...' % threading.currentThread().getName() # 调用acquire([timeout])时,线程将一直阻塞,
# 直到获得锁定或者直到timeout秒后(timeout参数可选)。
# 返回是否获得锁。
if lock.acquire():
print '%s get the lock.' % threading.currentThread().getName()
data += 1
time.sleep(2)
print '%s release lock...' % threading.currentThread().getName() # 调用release()将释放锁。
lock.release() t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

 

多运行几次,你会看到打印的信息顺序并不一致,这就证实了线程在锁定池中谁将获得锁运行是由系统调度决定(随机,不确定)

RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法: 
RLock()

实例方法: 
acquire([timeout])/release(): 跟Lock差不多。

# encoding: UTF-8
import threading
import time rlock = threading.RLock() def func():
# 第一次请求锁定
print '%s acquire lock...' % threading.currentThread().getName()
if rlock.acquire():
print '%s get the lock.' % threading.currentThread().getName()
time.sleep(2) # 第二次请求锁定
print '%s acquire lock again...' % threading.currentThread().getName()
if rlock.acquire():
print '%s get the lock.' % threading.currentThread().getName()
time.sleep(2) # 第一次释放锁
print '%s release lock...' % threading.currentThread().getName()
rlock.release()
time.sleep(2) # 第二次释放锁
print '%s release lock...' % threading.currentThread().getName()
rlock.release() t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

  

4、Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法: 
Condition([lock/rlock])

实例方法: 
acquire([timeout])/release(): 调用关联的锁的相应方法。 
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。 
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。 
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

# encoding: UTF-8
import threading
import time # 商品
product = None
# 条件变量
con = threading.Condition() # 生产者方法
def produce():
global product if con.acquire():
while True:
if product is None:
print 'produce...'
product = 'anything' # 通知消费者,商品已经生产
con.notify() # 等待通知
con.wait()
time.sleep(2) # 消费者方法
def consume():
global product if con.acquire():
while True:
if product is not None:
print 'consume...'
product = None # 通知生产者,商品已经没了
con.notify() # 等待通知
con.wait()
time.sleep(2) t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start()

  

5、Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法: 
Semaphore(value=1): value是计数器的初始值。

实例方法: 
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。 
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。

# encoding: UTF-8
import threading
import time # 计数器初值为2
semaphore = threading.Semaphore(2) def func(): # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
print '%s acquire semaphore...' % threading.currentThread().getName()
if semaphore.acquire(): print '%s get semaphore' % threading.currentThread().getName()
time.sleep(4) # 释放Semaphore,计数器+1
print '%s release semaphore' % threading.currentThread().getName()
semaphore.release() t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t4 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
t4.start() time.sleep(2) # 没有获得semaphore的主线程也可以调用release
# 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
print 'MainThread release semaphore without acquire'
semaphore.release()

  

6、Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法: 
Event()

实例方法: 
isSet(): 当内置标志为True时返回True。 
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。 
clear(): 将标志设为False。 
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

# encoding: UTF-8
import threading
import time event = threading.Event() def func():
# 等待事件,进入等待阻塞状态
print '%s wait for event...' % threading.currentThread().getName()
event.wait() # 收到事件后进入运行状态
print '%s recv event.' % threading.currentThread().getName() t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start() time.sleep(2) # 发送事件通知
print 'MainThread set event.'
event.set()

  

Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法: 
Timer(interval, function, args=[], kwargs={}) 
interval: 指定的时间 
function: 要执行的方法 
args/kwargs: 方法的参数

实例方法: 
Timer从Thread派生,没有增加实例方法

# encoding: UTF-8
import threading def func():
print 'hello timer!' timer = threading.Timer(5, func)
timer.start()

  

8、local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

# encoding: UTF-8
import threading local = threading.local()
local.tname = 'main' def func():
local.tname = 'notmain'
print local.tname t1 = threading.Thread(target=func)
t1.start()
t1.join() print local.tname

  熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

# encoding: UTF-8
import threading alist = None
condition = threading.Condition() def doSet():
if condition.acquire():
while alist is None:
condition.wait()
for i in range(len(alist))[::-1]:
alist[i] = 1
condition.release() def doPrint():
if condition.acquire():
while alist is None:
condition.wait()
for i in alist:
print i,
print
condition.release() def doCreate():
global alist
if condition.acquire():
if alist is None:
alist = [0 for i in range(10)]
condition.notifyAll()
condition.release() tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start()

  

【python】多线程详解的更多相关文章

  1. python多线程详解

    目录 python多线程详解 一.线程介绍 什么是线程 为什么要使用多线程 二.线程实现 threading模块 自定义线程 守护线程 主线程等待子线程结束 多线程共享全局变量 互斥锁 递归锁 信号量 ...

  2. [Python 多线程] 详解daemon属性值None,False,True的区别 (五)

    本文以多个例子介绍Python多线程中daemon属性值的区别. 回顾: 前面的文章简单介绍了在现代操作系统中,每一个进程都认为自己独占所有的计算机资源. 或者说线程就是独立的王国,进程间是相对独立的 ...

  3. [转] Python Traceback详解

    追莫名其妙的bugs利器-mark- 转自:https://www.jianshu.com/p/a8cb5375171a   Python Traceback详解   刚接触Python的时候,简单的 ...

  4. python线程详解

    #线程状态 #线程同步(锁)#多线程的优势在于可以同时运行多个任务,至少感觉起来是这样,但是当线程需要共享数据时,可能存在数据不同步的问题. #threading模块#常用方法:'''threadin ...

  5. iOS开发——多线程OC篇&多线程详解

    多线程详解 前面介绍了多线程的各种方式及其使用,这里补一点关于多线程的概念及相关技巧与使用,相信前面不懂的地方看了这里之后你就对多线程基本上没有什么问题了! 1——首先ios开发多线程中必须了解的概念 ...

  6. iOS开发——GCD多线程详解

    GCD多线程详解 1. 什么是GCD Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,简单来说,GCD就是iOS一套解决多线程的机制,使用GCD能够最大限度简化多线程 ...

  7. Python闭包详解

    Python闭包详解 1 快速预览 以下是一段简单的闭包代码示例: def foo(): m=3 n=5 def bar(): a=4 return m+n+a return bar >> ...

  8. Java 多线程详解(四)------生产者和消费者

    Java 多线程详解(一)------概念的引入:http://www.cnblogs.com/ysocean/p/6882988.html Java 多线程详解(二)------如何创建进程和线程: ...

  9. java中多线程详解-synchronized

    一.介绍 当多个线程涉及到共享数据的时候,就会设计到线程安全的问题.非线程安全其实会在多个线程对同一个对象中的实例变量进行并发访问时发生,产生的后果就是“脏读”.发生脏读,就是取到的数据已经被其他的线 ...

  10. python 数据类型详解

    python数据类型详解 参考网址:http://www.cnblogs.com/linjiqin/p/3608541.html 目录1.字符串2.布尔类型3.整数4.浮点数5.数字6.列表7.元组8 ...

随机推荐

  1. Eclipse下SpringBoot没有自动加载application.properties文件

    Eclipse内创建SpringBoot项目,在java/main/resources文件夹下面创建application.properties配置文件,SpringApplication.run后发 ...

  2. 河工大玲珑校赛重现の rqy的键盘

    题目传送门:http://218.28.220.249:50015/JudgeOnline/problem.php?id=1263 1263: rqy的键盘 时间限制: 1 秒  内存限制: 128 ...

  3. virtualenv搭建python3 环境

    参考 1.安装python3 安装脚本如下: wget https://www.python.org/ftp/python/3.4.3/Python-3.4.3.tgz tar zxvf Python ...

  4. 20155219实验四 Android开发基础设计实验报告

    20155219实验四 Android开发基础设计实验报告 实验内容 安装Andriod Studio并配置软件 使用Andriod Studio软件实现Hello World!+学号的小程序 实验步 ...

  5. day 023-python 包

    包 : 我 们创建的每个文件夹都可以被称之为包. 但是我们要注意, 在python2中规定.中包内必须存在 __init__.py文件.  python3可有可无,但一般要求写上.创建包的目的不是为了 ...

  6. apache 和 php 整合、apache配制虚拟机

    如何 把apache 和 php 整合起来 ?   (关闭防火墙或在防火墙内添加80端口,关闭selinux)   修改:apache的配制文件:/usr/local/apache2.4/conf/h ...

  7. windows server 2008 R2 部署NFS,实现多台服务器间、客户端间的共享目录。

    如何通过Windows Server 2008 R2建立NFS存储服务? 通过Windows Server 2008 R2,我们可以很容易地将其作为一台NFS存储服务器,得到一个NFS软存储,轻松解决 ...

  8. 芯灵思SinlinxA33开发板Linux内核定时器编程

    开发平台 * 芯灵思SinlinxA33开发板 淘宝店铺: https://sinlinx.taobao.com/ 嵌入式linux 开发板交流 QQ:641395230 Linux 内核定时器是内核 ...

  9. 重拾C++第一天_WDS

    1.面向对象编程的三大特点:封装.继承.多态 2.C++中若不指定类中成员的访问权限默认就是private的(class默认是private的,struct默认是public的). 3.C++规范中类 ...

  10. Android USB Host框架

    Android 下的usb框架及功能点:https://blog.csdn.net/tianruxishui/article/details/379029591.Android framework中* ...