org.apache.flink.streaming.api.windowing.triggers;

 

Trigger

public abstract class Trigger<T, W extends Window> implements Serializable {

    /**
* Called for every element that gets added to a pane. The result of this will determine
* whether the pane is evaluated to emit results.
*
* @param element The element that arrived.
* @param timestamp The timestamp of the element that arrived.
* @param window The window to which the element is being added.
* @param ctx A context object that can be used to register timer callbacks.
*/
public abstract TriggerResult onElement(T element, long timestamp, W window, TriggerContext ctx) throws Exception; /**
* Called when a processing-time timer that was set using the trigger context fires.
*
* @param time The timestamp at which the timer fired.
* @param window The window for which the timer fired.
* @param ctx A context object that can be used to register timer callbacks.
*/
public abstract TriggerResult onProcessingTime(long time, W window, TriggerContext ctx) throws Exception; /**
* Called when an event-time timer that was set using the trigger context fires.
*
* @param time The timestamp at which the timer fired.
* @param window The window for which the timer fired.
* @param ctx A context object that can be used to register timer callbacks.
*/
public abstract TriggerResult onEventTime(long time, W window, TriggerContext ctx) throws Exception; /**
* Called when several windows have been merged into one window by the
* {@link org.apache.flink.streaming.api.windowing.assigners.WindowAssigner}.
*
* @param window The new window that results from the merge.
* @param ctx A context object that can be used to register timer callbacks and access state.
*/
public TriggerResult onMerge(W window, OnMergeContext ctx) throws Exception {
throw new RuntimeException("This trigger does not support merging.");
}

Trigger决定pane何时被evaluated,实现一系列接口,来判断各种情况下是否需要trigger

看看具体的trigger的实现,

ProcessingTimeTrigger

/**
* A {@link Trigger} that fires once the current system time passes the end of the window
* to which a pane belongs.
*/
public class ProcessingTimeTrigger implements Trigger<Object, TimeWindow> {
private static final long serialVersionUID = 1L; private ProcessingTimeTrigger() {} @Override
public TriggerResult onElement(Object element, long timestamp, TimeWindow window, TriggerContext ctx) {
ctx.registerProcessingTimeTimer(window.maxTimestamp()); //对于processingTime,element的trigger时间是current+window,所以这里需要注册定时器去触发
return TriggerResult.CONTINUE;
} @Override
public TriggerResult onEventTime(long time, TimeWindow window, TriggerContext ctx) throws Exception {
return TriggerResult.CONTINUE;
} @Override
public TriggerResult onProcessingTime(long time, TimeWindow window, TriggerContext ctx) {//触发后调用
return TriggerResult.FIRE_AND_PURGE;
} @Override
public String toString() {
return "ProcessingTimeTrigger()";
} /**
* Creates a new trigger that fires once system time passes the end of the window.
*/
public static ProcessingTimeTrigger create() {
return new ProcessingTimeTrigger();
}
}

可以看到只有在onProcessingTime的时候,是FIRE_AND_PURGE,其他时候都是continue

再看个CountTrigger,

public class CountTrigger<W extends Window> extends Trigger<Object, W> {

    private final long maxCount;

    private final ReducingStateDescriptor<Long> stateDesc =
new ReducingStateDescriptor<>("count", new Sum(), LongSerializer.INSTANCE); private CountTrigger(long maxCount) {
this.maxCount = maxCount;
} @Override
public TriggerResult onElement(Object element, long timestamp, W window, TriggerContext ctx) throws Exception {
ReducingState<Long> count = ctx.getPartitionedState(stateDesc); //从backend取出conunt state
count.add(1L); //加1
if (count.get() >= maxCount) {
count.clear();
return TriggerResult.FIRE;
}
return TriggerResult.CONTINUE;
} @Override
public TriggerResult onEventTime(long time, W window, TriggerContext ctx) {
return TriggerResult.CONTINUE;
} @Override
public TriggerResult onProcessingTime(long time, W window, TriggerContext ctx) throws Exception {
return TriggerResult.CONTINUE;
} @Override
public TriggerResult onMerge(W window, OnMergeContext ctx) throws Exception {
ctx.mergePartitionedState(stateDesc); //先调用merge,底层backend里面的window进行merge
ReducingState<Long> count = ctx.getPartitionedState(stateDesc); //merge后再取出state,count,进行判断
if (count.get() >= maxCount) {
return TriggerResult.FIRE;
}
return TriggerResult.CONTINUE;
}

很简单,既然是算count,那么和time相关的自然都是continue

对于count,是在onElement中触发,每次来element都会走到这个逻辑

当累积的count > 设定的count时,就会返回Fire,注意,这里这是fire,并不会purge

并将计数清0

 

TriggerResult

TriggerResult是个枚举,

enum TriggerResult {
CONTINUE(false, false), FIRE_AND_PURGE(true, true), FIRE(true, false), PURGE(false, true); private final boolean fire;
private final boolean purge;
}

两个选项,fire,purge,2×2,所以4种可能性

两个Result可以merge,

/**
* Merges two {@code TriggerResults}. This specifies what should happen if we have
* two results from a Trigger, for example as a result from
* {@link Trigger#onElement(Object, long, Window, Trigger.TriggerContext)} and
* {@link Trigger#onEventTime(long, Window, Trigger.TriggerContext)}.
*
* <p>
* For example, if one result says {@code CONTINUE} while the other says {@code FIRE}
* then {@code FIRE} is the combined result;
*/
public static TriggerResult merge(TriggerResult a, TriggerResult b) {
if (a.purge || b.purge) {
if (a.fire || b.fire) {
return FIRE_AND_PURGE;
} else {
return PURGE;
}
} else if (a.fire || b.fire) {
return FIRE;
} else {
return CONTINUE;
}
}

 

TriggerContext

为Trigger做些环境的工作,比如管理timer,和处理state

这些接口在,Trigger中的接口逻辑里面都会用到,所以在Trigger的所有接口上,都需要传入context

/**
* A context object that is given to {@link Trigger} methods to allow them to register timer
* callbacks and deal with state.
*/
public interface TriggerContext { long getCurrentProcessingTime();
long getCurrentWatermark(); /**
* Register a system time callback. When the current system time passes the specified
* time {@link Trigger#onProcessingTime(long, Window, TriggerContext)} is called with the time specified here.
*
* @param time The time at which to invoke {@link Trigger#onProcessingTime(long, Window, TriggerContext)}
*/
void registerProcessingTimeTimer(long time);
void registerEventTimeTimer(long time); void deleteProcessingTimeTimer(long time);
void deleteEventTimeTimer(long time); <S extends State> S getPartitionedState(StateDescriptor<S, ?> stateDescriptor);
}

 

OnMergeContext 仅仅是多了一个接口,

public interface OnMergeContext extends TriggerContext {
<S extends MergingState<?, ?>> void mergePartitionedState(StateDescriptor<S, ?> stateDescriptor);
}

 

WindowOperator.Context作为TriggerContext的一个实现,

/**
* {@code Context} is a utility for handling {@code Trigger} invocations. It can be reused
* by setting the {@code key} and {@code window} fields. No internal state must be kept in
* the {@code Context}
*/
public class Context implements Trigger.OnMergeContext {
protected K key; //Context对应的window上下文
protected W window; protected Collection<W> mergedWindows; //onMerge中被赋值 @SuppressWarnings("unchecked")
public <S extends State> S getPartitionedState(StateDescriptor<S, ?> stateDescriptor) {
try {
return WindowOperator.this.getPartitionedState(window, windowSerializer, stateDescriptor); //从backend里面读出改window的状态,即window buffer
} catch (Exception e) {
throw new RuntimeException("Could not retrieve state", e);
}
} @Override
public <S extends MergingState<?, ?>> void mergePartitionedState(StateDescriptor<S, ?> stateDescriptor) {
if (mergedWindows != null && mergedWindows.size() > 0) {
try {
WindowOperator.this.getStateBackend().mergePartitionedStates(window, //在backend层面把mergedWindows merge到window中
mergedWindows,
windowSerializer,
stateDescriptor);
} catch (Exception e) {
throw new RuntimeException("Error while merging state.", e);
}
}
} @Override
public void registerProcessingTimeTimer(long time) {
Timer<K, W> timer = new Timer<>(time, key, window);
// make sure we only put one timer per key into the queue
if (processingTimeTimers.add(timer)) {
processingTimeTimersQueue.add(timer);
//If this is the first timer added for this timestamp register a TriggerTask
if (processingTimeTimerTimestamps.add(time, 1) == 0) { //如果这个window是第一次注册的话
ScheduledFuture<?> scheduledFuture = WindowOperator.this.registerTimer(time, WindowOperator.this); //对于processTime必须注册定时器主动触发
processingTimeTimerFutures.put(time, scheduledFuture);
}
}
} @Override
public void registerEventTimeTimer(long time) {
Timer<K, W> timer = new Timer<>(time, key, window);
if (watermarkTimers.add(timer)) {
watermarkTimersQueue.add(timer);
}
} //封装一遍trigger的接口,并把self作为context传入trigger的接口中
public TriggerResult onElement(StreamRecord<IN> element) throws Exception {
return trigger.onElement(element.getValue(), element.getTimestamp(), window, this);
} public TriggerResult onProcessingTime(long time) throws Exception {
return trigger.onProcessingTime(time, window, this);
} public TriggerResult onEventTime(long time) throws Exception {
return trigger.onEventTime(time, window, this);
} public TriggerResult onMerge(Collection<W> mergedWindows) throws Exception {
this.mergedWindows = mergedWindows;
return trigger.onMerge(window, this);
} }

 

 

Evictor

/**
* An {@code Evictor} can remove elements from a pane before it is being processed and after
* window evaluation was triggered by a
* {@link org.apache.flink.streaming.api.windowing.triggers.Trigger}.
*
* <p>
* A pane is the bucket of elements that have the same key (assigned by the
* {@link org.apache.flink.api.java.functions.KeySelector}) and same {@link Window}. An element can
* be in multiple panes of it was assigned to multiple windows by the
* {@link org.apache.flink.streaming.api.windowing.assigners.WindowAssigner}. These panes all
* have their own instance of the {@code Evictor}.
*
* @param <T> The type of elements that this {@code Evictor} can evict.
* @param <W> The type of {@link Window Windows} on which this {@code Evictor} can operate.
*/
public interface Evictor<T, W extends Window> extends Serializable { /**
* Computes how many elements should be removed from the pane. The result specifies how
* many elements should be removed from the beginning.
*
* @param elements The elements currently in the pane.
* @param size The current number of elements in the pane.
* @param window The {@link Window}
*/
int evict(Iterable<StreamRecord<T>> elements, int size, W window);
}

Evictor的目的就是在Trigger fire后,但在element真正被处理前,从pane中remove掉一些数据

比如你虽然是每小时触发一次,但是只是想处理最后10分钟的数据,而不是所有数据。。。

 

CountEvictor

/**
* An {@link Evictor} that keeps only a certain amount of elements.
*
* @param <W> The type of {@link Window Windows} on which this {@code Evictor} can operate.
*/
public class CountEvictor<W extends Window> implements Evictor<Object, W> {
private static final long serialVersionUID = 1L; private final long maxCount; private CountEvictor(long count) {
this.maxCount = count;
} @Override
public int evict(Iterable<StreamRecord<Object>> elements, int size, W window) {
if (size > maxCount) {
return (int) (size - maxCount);
} else {
return 0;
}
} /**
* Creates a {@code CountEvictor} that keeps the given number of elements.
*
* @param maxCount The number of elements to keep in the pane.
*/
public static <W extends Window> CountEvictor<W> of(long maxCount) {
return new CountEvictor<>(maxCount);
}
}

初始化count,表示想保留多少elements(from end)

evict返回需要删除的elements数目(from begining)

如果element数大于保留数,我们需要删除size – maxCount(from begining)

反之,就全保留

 

TimeEvictor

/**
* An {@link Evictor} that keeps elements for a certain amount of time. Elements older
* than {@code current_time - keep_time} are evicted.
*
* @param <W> The type of {@link Window Windows} on which this {@code Evictor} can operate.
*/
public class TimeEvictor<W extends Window> implements Evictor<Object, W> {
private static final long serialVersionUID = 1L; private final long windowSize; public TimeEvictor(long windowSize) {
this.windowSize = windowSize;
} @Override
public int evict(Iterable<StreamRecord<Object>> elements, int size, W window) {
int toEvict = 0;
long currentTime = Iterables.getLast(elements).getTimestamp();
long evictCutoff = currentTime - windowSize;
for (StreamRecord<Object> record: elements) {
if (record.getTimestamp() > evictCutoff) {
break;
}
toEvict++;
}
return toEvict;
}
}

TimeEvictor设置需要保留的时间,

用最后一条的时间作为current,current-windowSize,作为界限,小于这个时间的要evict掉

这里的前提是,数据是时间有序的

Flink – Trigger,Evictor的更多相关文章

  1. Flink架构,源码及debug

    序 工作中用Flink做批量和流式处理有段时间了,感觉只看Flink文档是对Flink ProgramRuntime的细节描述不是很多, 程序员还是看代码最简单和有效.所以想写点东西,记录一下,如果能 ...

  2. 3、flink架构,资源和资源组

    一.flink架构 1.1.集群模型和角色 如上图所示:当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager.由 Client 提交任务给 JobMa ...

  3. flink solt,并行度

    转自:https://www.jianshu.com/p/3598f23031e6 简介 Flink运行时主要角色有两个:JobManager和TaskManager,无论是standalone集群, ...

  4. java:JQuery(声明,JQ和JS对象的区别,prop,attr,addClass,offset,trigger,dblclick和change事件,hide,show,toggle,slideUp,slideDown,slideToggle,三种选择器,标签的获取,三张图片的放大与缩小)

    1.JQuery: jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计 的宗旨是“ ...

  5. 1、flink介绍,反压原理

    一.flink介绍  Apache Flink是一个分布式大数据处理引擎,可对有界数据流和无界数据流进行有状态计算. 可部署在各种集群环境,对各种大小的数据规模进行快速计算. 1.1.有界数据流和无界 ...

  6. Flink – window operator

      参考, http://wuchong.me/blog/2016/05/25/flink-internals-window-mechanism/ http://wuchong.me/blog/201 ...

  7. 基于Flink的windows--简介

    新的一年,新的开始,新的习惯,现在开始. 1.简介 Flink是德国一家公司名为dataArtisans的产品,2016年正式被apache提升为顶级项目(地位同spark.storm等开源架构).并 ...

  8. <译>Flink编程指南

    Flink 的流数据 API 编程指南 Flink 的流数据处理程序是常规的程序 ,通过再流数据上,实现了各种转换 (比如 过滤, 更新中间状态, 定义窗口, 聚合).流数据可以来之多种数据源 (比如 ...

  9. Flink - CoGroup

    使用方式, dataStream.coGroup(otherStream) .where(0).equalTo(1) .window(TumblingEventTimeWindows.of(Time. ...

随机推荐

  1. Android Killer工具用法

    一.工程信息 工程信息主要是解析的AndroidManifest文件 二.工程管理器 三.配置插入代码 在代码中点右键就可以一键插入代码了 四.字符串搜索功能 支持正则, 比jeb搜索功能强大 来自为 ...

  2. canvas案例——画时钟

    基本思路,先画一个200半径的圆 ctx.arc(250,250,200,0,2*Math.PI); 然后再画时分刻度,可以先利用translate变化坐标到圆的中心点,然后再通过rotate旋转 / ...

  3. BeautifulSoup的选择器

    用BeautifulSoup查找指定标签(元素)的时候,有几种方法: soup=BeautifulSoup(html) 1.soup.find_all(tagName),返回一个指定Tag元素的列表 ...

  4. 我常用的find命令

    查找某种类型文件中包含特定字符的文件 find /* -type f -name "*.php" |xargs grep "rename(" find ./|x ...

  5. mysql 优化实例之索引创建

    mysql 优化实例之索引创建 优化前: pt-query-degist分析结果: # Query 23: 0.00 QPS, 0.00x concurrency, ID 0x78761E301CC7 ...

  6. CI 笔记一

    CodeIgniter 说明 CodeIgniter 是为PHP 开发人员提供的一套Web 应用程序工具包.它的目标是能 够让你比从零开始更加快速的完成项目,它提供了一套丰富的的类库来满足我们日常 的 ...

  7. day3

    程序1: 实现简单的shell sed替换功能 ]new = sys.argv[]file_name = sys.argv[]tmp_file ="tmpfile"open(tmp ...

  8. LVS集群之NAT模式实现

    LVS集群之NAT模式实现 一.集群的种类 集群系统主要分为 1.HA:高可用集群,又叫双机热备.   (a)原理      2台机器A,B,正常是A提供服务,B待命闲置,当A宕机或服务宕掉,会切换至 ...

  9. asp.net mvc5 伪静态

    asp.net mvc5 伪静态 WebForm Mvc4和5通用 1.背景:老项目WebForm开发 需要 融合到新项目Mvc5开发 2.需求:Url地址TruckDetail.aspx?id=45 ...

  10. iOS 编码转换

    - (NSString *)SaveFileToDocuments:(NSString *)url { // NSString *url = @"http://172.28.250.70/a ...