一,选择数据库,这里使用标准mysql sakila数据库

mysql -u root -D sakila -p

二。首先尝试把表中的数据导入到hdfs文件中,这样后续就可以使用spark来dataframe或者rdd来处理数据

sqoop import --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --table rental --target-dir "SqoopImport/rental" --num-mappers 1

\\SqoopImport 目录必须有,rental 目录可以不存在

三。如果要导入到hive里面,要使用 --warehouse参数。

sqoop import --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --table rental --warehouse-dir "/user/hive/warehouse/sakila.db" --num-mappers 2

\\因为之前我们已经全表导入过一次了,会提示文件已经存在的错误

hadoop fs -mv /user/hive/warehouse/sakila.db/rental /user/hive/warehouse/sakila.db/rental2
\\把原来的目录移走
sqoop import --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --table rental --warehouse-dir "/user/hive/warehouse/sakila.db" --num-mappers 2

四。也可以通过sqoop命令来查看hive的元数据库。

1.查看多少个数据库

sqoop list-databases --connect "jdbc:mysql://host03.xyy:3306" --username root --password root

2.查看多少给表

sqoop list-tables --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root

3.sqoop执行select语句。

sqoop eval --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --query "select * from rental limit 10"

五。导入hive或者hdfs中使用追加模式

sqoop import --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --table rental --where "date(return_date) < '2005-07-30'" --warehouse-dir "/user/hive/warehouse/sakila.db" --append --num-mappers 2

Total MapReduce CPU Time Spent: 9 seconds 250 msec
OK
23191
Time taken: 30.055 seconds, Fetched: 1 row(s)
hive>
\\原来数据hive里面的表格数据是16044条,重新append一批数据以后百年城23191条
\\apend 也可以应用 hdfs文件中,和target-dir配合使用

六。导入hdfs和hive中使用删除模式

sqoop import --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --table rental --where "date(return_date) < '2005-07-30'" --warehouse-dir "/user/hive/warehouse/sakila.db" --delete-target-dir --num-mappers 2

OK
7147
Time taken: 32.115 seconds, Fetched: 1 row(s)
hive>
\\--delete-target-dir 是删除模式导入,清空原来的数据,这个命令也可以在导入hdfs下使用

注意以上例子中都是使用了where条件的导入。

七。关于导入数据的并行数量

前面几个例子都是使用了--num-mapper 2 也就是两个并行。

实际上默认是因为原来的mysql表中有主键,如果没有主键是不能直接指定并行为2 的。因为系统不知道怎么切割数据。

如果要并行需要使用另外一个参数

在mysql中执行复制一个表格
create table customer_copy like customer;
insert into customer_copy select * from customer

sqoop import --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --table customer_copy --warehouse-dir "/user/hive/warehouse/sakila.db" --delete-target-dir -split-by address_id --num-mappers 2

八。sqoop全表导入

//导入数据库mysql到hive

sqoop import-all-tables --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --hive-import --hive-database sakila  --m 2

如果其中部分表格没有主键 并行就有问题。需要使用一个参数 --autoreset-to-one-mapper

sqoop import-all-tables --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --warehouse-dir  "SqoopImport/sakila"   --autoreset-to-one-mapper --m 2

这样对于没有主键的自动变成一个map去处理

九。文件格式

通过参数决定每个表存入hdfs中的格式

--as-textfile  (default)
--as-avrodatafile
--as-sequencefile
--as-parquetfile

10.sqoop import参数列表

Argument Description
--append Append data to an existing dataset in HDFS
--as-avrodatafile Imports data to Avro Data Files
--as-sequencefile Imports data to SequenceFiles
--as-textfile Imports data as plain text (default)
--as-parquetfile Imports data to Parquet Files
--boundary-query <statement> Boundary query to use for creating splits
--columns <col,col,col…> Columns to import from table
--delete-target-dir Delete the import target directory if it exists
--direct Use direct connector if exists for the database
--fetch-size <n> Number of entries to read from database at once.
--inline-lob-limit <n> Set the maximum size for an inline LOB
-m,--num-mappers <n> Use n map tasks to import in parallel
-e,--query <statement> Import the results of statement.
--split-by <column-name> Column of the table used to split work units. Cannot be used with --autoreset-to-one-mapper option.
--split-limit <n> Upper Limit for each split size. This only applies to Integer and Date columns. For date or timestamp fields it is calculated in seconds.
--autoreset-to-one-mapper Import should use one mapper if a table has no primary key and no split-by column is provided. Cannot be used with --split-by <col>option.
--table <table-name> Table to read
--target-dir <dir> HDFS destination dir
--temporary-rootdir <dir> HDFS directory for temporary files created during import (overrides default "_sqoop")
--warehouse-dir <dir> HDFS parent for table destination
--where <where clause> WHERE clause to use during import
-z,--compress Enable compression
--compression-codec <c> Use Hadoop codec (default gzip)
--null-string <null-string> The string to be written for a null value for string columns
--null-non-string <null-string> The string to be written for a null value for non-string columns

大数据入门到精通18--sqoop 导入关系库到hdfs中和hive表中的更多相关文章

  1. 大数据入门到精通1--大数据环境下的基础文件HDFS 操作

    1.使用hdfs用户或者hadoop用户登录 2.在linux shell下执行命令 hadoop fs -put '本地文件名' hadoop fs - put '/home/hdfs/sample ...

  2. 大数据入门到精通19--mysql 数据导入到hive数据中

    一.正常按照数据库和表导入 \\前面介绍了通过底层文件得形式导入到hive的表中,或者直接导入到hdfs中,\\现在介绍通过hive的database和table命令来从上层操作.sqoop impo ...

  3. 大数据入门到精通13--为后续和MySQL数据库准备

    We will be using the sakila database extensively inside the rest of the course and it would be great ...

  4. 大数据入门到精通2--spark rdd 获得数据的三种方法

    通过hdfs或者spark用户登录操作系统,执行spark-shell spark-shell 也可以带参数,这样就覆盖了默认得参数 spark-shell --master yarn --num-e ...

  5. 大数据学习之路之sqoop导入

    按照网上的代码导入 hadoop(十九)-Sqoop数据清洗 - 简书 (jianshu.com) ./sqoop import --connect "jdbc:mysql://192.16 ...

  6. 大数据入门到精通16--hive 的条件语句和聚合函数

    一.条件表达 case when ... then when .... then ... when ... then ...end select film_id,rpad(title,20," ...

  7. 大数据入门到精通12--spark dataframe 注册成hive 的临时表

    一.获得最初的数据并形成dataframe val ny= sc.textFile("data/new_york/")val header=ny.firstval filterNY ...

  8. 大数据入门到精通11-spark dataframe 基础操作

    // dataframe is the topic 一.获得基础数据.先通过rdd的方式获得数据 val ny= sc.textFile("data/new_york/")val ...

  9. 大数据入门到精通10--spark rdd groupbykey的使用

    //groupbykey 一.准备数据val flights=sc.textFile("data/Flights/flights.csv")val sampleFlights=sc ...

随机推荐

  1. Vue项目中GraphQL入门学习与应用

    1.GraphQL是什么,能干什么? 正如官网所说,GraphQL是一种用于API查询的语言.Facebook 的移动应用从 2012 年就开始使用 GraphQL.GraphQL 规范于 2015 ...

  2. JavaScript 集合对象

    1. 集合对象 1.1 Object 关于Object类型的创建和底层存储原理我在另一篇文章有说明: JavaScript 对象属性底层原理 我们知道了大多数情况下Object底层都是Hash结构,我 ...

  3. codechef February Challenge 2018 简要题解

    比赛链接:https://www.codechef.com/FEB18,题面和提交记录是公开的,这里就不再贴了 Chef And His Characters 模拟题 Chef And The Pat ...

  4. 在socket的server端处理client端发来的数据

    一.楔子 最近做了一个需求遇到一个坑,归结成一个小问题,其实就是在socket的server端处理client端发来的数据的问题,现将这个问题总结一下,本文将数据在server端以字典的形式存储. 另 ...

  5. Spring4.0开始的泛型依赖

    参考资料: http://www.cnblogs.com/solverpeng/p/5687304.html 视频地址:https://edu.51cto.com/course/1956.html 一 ...

  6. log4j2 实际使用详解

    转载至: https://blog.csdn.net/vbirdbest/article/details/71751835 如下是maven项目中的实例: 首先pom.xml中引入如下依赖,注意看都是 ...

  7. Sping Cloud项目启动报A component required a bean of type 'com.tianyan.bbc.dao.SecurityUserBaseMapper' that could not be found.

    项目构建正常,启动和Debug报以下错误: Error starting ApplicationContext. To display the conditions report re-run you ...

  8. linux 安装中文支持

    下载  fonts-chinese-3.02-12.el5.noarch.rpm fonts-ISO8859-2-75dpi-1.0-17.1.noarch.rpm 安装各种提示的依赖 安装 chkf ...

  9. 关于mpi的理论知识以及编写程序来实现数据积分中的梯形积分法。

    几乎所有人的第一个程序是从“hello,world”程序开始学习的 #include "mpi.h" #include <stdio.h> int main(int a ...

  10. Java高级框架-----Spring(一)

    一: 1. Spring几大核心功能: IOC/DI 控制反转/依赖注入 AOP 面向切面编程 声明式事务 2. Spring 框架的的runtime 2.1 test:Spring提供测试功能 2. ...