我为什么T了。。。。

Power Stations

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2517    Accepted Submission(s): 748
Special Judge

Problem Description
There are N towns in our country, and some of them are connected by electricity cables. It is known that every town owns a power station. When a town’s power station begins to work, it will provide electric power for this town and the neighboring towns which are connected by cables directly to this town. However, there are some strange bugs in the electric system –One town can only receive electric power from no more than one power station, otherwise the cables will be burned out for overload.

The power stations cannot work all the time. For each station there is an available time range. For example, the power station located on Town 1 may be available from the third day to the fifth day, while the power station on Town 2 may be available from the first day to the forth day. You can choose a sub-range of the available range as the working time for each station. Note that you can only choose one sub-range for each available range, that is, once the station stops working, you cannot restart it again. Of course, it is possible not to use any of them.

Now you are given all the information about the cable connection between the towns, and all the power stations’ available time. You need to find out a schedule that every town will get the electricity supply for next D days, one and only one supplier for one town at any time.

 
Input
There are several test cases. The first line of each test case contains three integers, N, M and D (1 <= N <= 60, 1 <= M <= 150, 1 <= D <= 5), indicating the number of towns is N, the number of cables is M, and you should plan for the next D days.

Each of the next M lines contains two integers a, b (1 <= a, b <= N), which means that Town a and Town b are connected directly. Then N lines followed, each contains two numbers si and ei, (1 <= si <= ei <= D) indicating that the available time of Town i’s power station is from the si-th day to the ei-th day (inclusive).

 
Output
For each test case, if the plan exists, output N lines. The i-th line should contain two integers ui and vi, indicating that Town i’s power station should work from the ui-th day to vi-day (inclusive). If you didn’t use this power station at all, set ui = vi = 0.

If the plan doesn’t exist, output one line contains “No solution” instead.

Note that the answer may not be unique. Any correct answers will be OK.

Output a blank line after each case.

 
Sample Input
3 3 5
1 2
2 3
3 1
1 5
1 5
1 5

4 4 5
1 2
2 3
3 4
4 1
1 5
1 5
1 5
1 5

 
Sample Output
1 5
0 0
0 0

No solution

 
Source
 
Recommend
lcy
 
解析:
  选了某个村庄后 连带着和当前村庄相连的村庄也会被选择  这是不是就成为了一个约束条件所以把每个村庄安排在一行 每个村庄都有d个单位长度
把每个村庄的发电机的工作时间区间 的所有可能情况枚举出来 每种可能占一行
每个村庄再增加一行 且每行再增加n列 用于标记当前村庄是否被选择 且 只选择一次
 
这个T了
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int S[], head[], vis[];
int U[maxn], D[maxn], L[maxn], R[maxn];
int C[maxn], X[maxn];
int n, m, ans, ret, d; void init()
{
for(int i = ; i <= m; i++)
D[i] = i, U[i] = i, R[i] = i + , L[i] = i - ;
L[] = m, R[m] = ;
mem(S, ), mem(head, -);
ans = m + ;
} void delc(int c)
{
L[R[c]] = L[c], R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
U[D[j]] = U[j], D[U[j]] = D[j], S[C[j]]--; } void resc(int c)
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
U[D[j]] = j, D[U[j]] = j, S[C[j]]++;
L[R[c]] = c, R[L[c]] = c;
} void add(int r, int c)
{
ans++, S[c]++, C[ans] = c, X[ans] = r;
D[ans] = D[c];
U[ans] = c;
U[D[c]] = ans;
D[c] = ans;
if(head[r] < ) head[r] = L[ans] = R[ans] = ans;
else L[ans] = head[r], R[ans] = R[head[r]],L[R[head[r]]] = ans, R[head[r]] = ans;
} bool dfs(int sh)
{
if(!R[])
{
ret = sh;
return true;
}
int c = R[];
delc(c);
for(int i = D[c]; i != c; i = D[i])
{
vis[sh] = X[i];
for(int j = R[i]; j != i; j = R[j])
delc(C[j]);
if(dfs(sh + )) return true;
for(int j = L[i]; j != i; j = L[j])
resc(C[j]);
}
resc(c);
return false;
} int g[][];
struct node
{
int s, t, id;
}Node[], tmp[]; int main()
{ int u, v, s, t;
while(~scanf("%d%d%d", &n, &m, &d))
{
mem(g, );
for(int i = ; i < m; i++)
{
rd(u), rd(v);
g[u][v] = g[v][u] = ;
}
m = n * d + n;
init();
int cnt = ;
rap(i, , n)
{
g[i][i] = ;
rd(Node[i].s), rd(Node[i].t);
++cnt;
add(cnt, n * d + i);
tmp[cnt].s = , tmp[cnt].t = , tmp[cnt].id = i;
rap(j, Node[i].s, Node[i].t)
{
rap(k, j, Node[i].t)
{
++cnt;
add(cnt, n * d + i);
tmp[cnt].s = j, tmp[cnt].t = k, tmp[cnt].id = i;
rap(a, , n)
if(g[i][a])
rap(b, j, k)
add(cnt, (a - ) * d + b);
}
} } if(!dfs())
{
printf("No solution\n");
}
else
{
mem(X, ), mem(C, );
rep(i, , ret)
{
X[tmp[vis[i]].id] = tmp[vis[i]].s;
C[tmp[vis[i]].id] = tmp[vis[i]].t;
}
rap(i, , n)
printf("%d %d\n", X[i], C[i]);
}
printf("\n");
} return ;
}
  
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define REC( i , A , o ) for ( int i = A[o] ; i != o ; i = A[i] )
#define CLR( a , x ) memset ( a , x , sizeof a ) const int MAXN = ;
const int MAXM = ;
const int MAXNODE = ; struct Node {
int l , r , idx ;
Node () {}
Node ( int l , int r , int idx ) : l ( l ) , r ( r ) , idx ( idx ) {}
} ; struct DLX {
int U[MAXNODE] , D[MAXNODE] , L[MAXNODE] , R[MAXNODE] ;
int row[MAXNODE] , col[MAXNODE] ;
int S[MAXM] , H[MAXM] ;
int deep , ans[MAXN] ;
int n , m ;
int size ; int N , M , DD ;
int X[MAXN] , Y[MAXN] ;
Node node[MAXM] ;
int G[MAXN][MAXN] ; void remove ( int c ) {
L[R[c]] = L[c] ;
R[L[c]] = R[c] ;
REC ( i , D , c )
REC ( j , R , i ) {
D[U[j]] = D[j] ;
U[D[j]] = U[j] ;
-- S[col[j]] ;
}
} void resume ( int c ) {
REC ( i , U , c )
REC ( j , L , i ) {
++ S[col[j]] ;
U[D[j]] = j ;
D[U[j]] = j ;
}
R[L[c]] = c ;
L[R[c]] = c ;
} int dance ( int d ) {
if ( R[] == ) {
deep = d ;
return ;
}
int c = R[] ;
REC ( i , R , )
if ( S[c] > S[i] )
c = i ;
//printf ( "ok\n" ) ;
remove ( c ) ;
REC ( i , D , c ) {
ans[d] = row[i] ;
REC ( j , R , i )
remove ( col[j] ) ;
if ( dance ( d + ) )
return ;
REC ( j , L , i )
resume ( col[j] ) ;
}
resume ( c ) ;
return ;
} void link ( int r , int c ) {
++ size ;
++ S[c] ;
row[size] = r ;
col[size] = c ;
U[size] = U[c] ;
D[size] = c ;
D[U[c]] = size ;
U[c] = size ;
if ( ~H[r] ) {
R[size] = H[r] ;
L[size] = L[H[r]] ;
R[L[size]] = size ;
L[R[size]] = size ;
}
else
H[r] = L[size] = R[size] = size ;
} void init () {
CLR ( H , - ) ;
FOR ( i , , n ) {
S[i] = ;
L[i] = i - ;
R[i] = i + ;
U[i] = i ;
D[i] = i ;
}
L[] = n ;
R[n] = ;
size = n ;
} void solve () {
int x , y ;
n = N * DD + N ;
m = ;
init () ;
CLR ( G , ) ;
CLR ( node , ) ;
REP ( i , , M ) {
scanf ( "%d%d" , &x , &y ) ;
G[x][y] = G[y][x] = ;
}
FOR ( i , , N )
G[i][i] = ;
FOR ( idx , , N ) {
scanf ( "%d%d" , &x , &y ) ;
int tmp = N * DD + idx ;
++ m ;
link ( m , tmp ) ;//none select
node[m] = Node ( , , idx ) ;
FOR ( i , x , y )
FOR ( j , i , y ) {
++ m ;
link ( m , tmp ) ;
node[m] = Node ( i , j , idx ) ;
FOR ( a , , N )
if ( G[idx][a] )
FOR ( b , i , j )
link ( m , ( a - ) * DD + b ) ;
}
}
if ( !dance ( ) )
printf ( "No solution\n" ) ;
else {
CLR ( X , ) ;
CLR ( Y , ) ;
REP ( i , , deep ) {
X[node[ans[i]].idx] = node[ans[i]].l ;
Y[node[ans[i]].idx] = node[ans[i]].r ;
}
FOR ( i , , N )
printf ( "%d %d\n" , X[i] , Y[i] ) ;
}
printf ( "\n" ) ;
} } dlx ; int main () {
while ( ~scanf ( "%d%d%d" , &dlx.N , &dlx.M , &dlx.DD ) )
dlx.solve () ;
return ;
}

Power Stations

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2517    Accepted Submission(s): 748
Special Judge

Problem Description
There are N towns in our country, and some of them are connected by electricity cables. It is known that every town owns a power station. When a town’s power station begins to work, it will provide electric power for this town and the neighboring towns which are connected by cables directly to this town. However, there are some strange bugs in the electric system –One town can only receive electric power from no more than one power station, otherwise the cables will be burned out for overload.

The power stations cannot work all the time. For each station there is an available time range. For example, the power station located on Town 1 may be available from the third day to the fifth day, while the power station on Town 2 may be available from the first day to the forth day. You can choose a sub-range of the available range as the working time for each station. Note that you can only choose one sub-range for each available range, that is, once the station stops working, you cannot restart it again. Of course, it is possible not to use any of them.

Now you are given all the information about the cable connection between the towns, and all the power stations’ available time. You need to find out a schedule that every town will get the electricity supply for next D days, one and only one supplier for one town at any time.

 
Input
There are several test cases. The first line of each test case contains three integers, N, M and D (1 <= N <= 60, 1 <= M <= 150, 1 <= D <= 5), indicating the number of towns is N, the number of cables is M, and you should plan for the next D days.

Each of the next M lines contains two integers a, b (1 <= a, b <= N), which means that Town a and Town b are connected directly. Then N lines followed, each contains two numbers si and ei, (1 <= si <= ei <= D) indicating that the available time of Town i’s power station is from the si-th day to the ei-th day (inclusive).

 
Output
For each test case, if the plan exists, output N lines. The i-th line should contain two integers ui and vi, indicating that Town i’s power station should work from the ui-th day to vi-day (inclusive). If you didn’t use this power station at all, set ui = vi = 0.

If the plan doesn’t exist, output one line contains “No solution” instead.

Note that the answer may not be unique. Any correct answers will be OK.

Output a blank line after each case.

 
Sample Input
3 3 5
1 2
2 3
3 1
1 5
1 5
1 5

4 4 5
1 2
2 3
3 4
4 1
1 5
1 5
1 5
1 5

 
Sample Output
1 5
0 0
0 0

No solution

 
Source
 
Recommend
lcy

Power Stations HDU - 3663的更多相关文章

  1. 搜索(DLX):HDU 3663 Power Stations

    Power Stations Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. 【HDU 3663】 Power Stations

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3663 [算法] 先建图,然后用Dancing Links求解精确覆盖,即可 [代码] #inclu ...

  3. [DLX精确覆盖] hdu 3663 Power Stations

    题意: 给你n.m.d,代表有n个城市.m条城市之间的关系,每一个城市要在日后d天内都有电. 对于每一个城市,都有一个发电站,每一个发电站能够在[a,b]的每一个连续子区间内发电. x城市发电了.他相 ...

  4. 【HDOJ】Power Stations

    DLX.针对每个城市,每个城市可充电的区间构成一个plan.每个决策由N*D个时间及N个精确覆盖构成. /* 3663 */ #include <iostream> #include &l ...

  5. hdu 3663 DLX

    思路:把每个点拆成(d+1)*n列,行数为可拆分区间数.对所有的有i号点拆分出来的行都要建一条该行到i列的边,那么就能确保有i号点拆出来的行只能选择一行. #include<set> #i ...

  6. Destroying the bus stations HDU - 2485(最小割点)

    题意: 就是求最小割点 解析: 正向一遍spfa 反向一遍spfa  然后遍历每一条边,对于当前边 如果dis1[u] + dis2[v] + 1 <= k 那么就把这条边加入到网络流图中, 每 ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. hdu图论题目分类

    =============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...

  9. HDU图论题单

    =============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...

随机推荐

  1. H5 66-清除浮动方式二

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. 解决object at 0x01DB75F0

    python在学习过程中吗,由于常常会出现代码运行没报错,但输出的却不是我们想要的结果(图表,列表等等),而出现类似 <filter object at 0x01DB75F0>的情况,比如 ...

  3. 百度地图开发者API学习笔记二

    一,地图上多个覆盖物(Marker). 当有多个覆盖物时,我们需要获取每个点的信息.如下图,每个Marker的经度都不相同 二,代码: <!DOCTYPE html> <html&g ...

  4. telnet总结

    telnet是经常使用的客户端链接工具,总结一下常用的telnet的使用方法 1) 连接 telnet //链接swoole 2)退出当前连接 ctrl + ] 回车 3)查看常用的一些命令 ? 回车 ...

  5. 【Python3练习题 015】 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下。求它在第10次落地时,共经过多少米?第10次反弹多高?

    a = [100]  #每个‘反弹落地’过程经过的路程,第1次只有落地(100米) h = 100  #每个‘反弹落地’过程,反弹的高度,第1次为100米 print('第1次从%s米高落地,走过%s ...

  6. array_filter、array_walk、array_map的区别

    <?php $arr=array( 1,2,3,4,5,6 ); function filter($var){ if($var%2==0) return true; } $data=array_ ...

  7. js中表达式 >>> 0 浅析

    zepto源码的Array.prototype.reduce有一行 len = t.length >>> 0 当时就很疑惑,知道 >>是移位,那>>>又 ...

  8. AssemblyScript的测试

    详细文档介绍 export function f(x: i32): i32 { if (x === 1 || x === 2) { return 1; } return f(x - 1) + f(x ...

  9. Hbase数据结构模型

  10. Linux基础学习(16)--备份与恢复

    第十六章——备份与恢复 一.备份概述 1.Linux系统需要备份的数据: 2.备份策略: 二.dump和restore命令 1.dump命令: 2.restore命令: