[20190214]11g Query Result Cache RC Latches.txt

--//昨天我重复链接http://www.pythian.com/blog/oracle-11g-query-result-cache-rc-latches/的测试,
--//按照我的理解如果sql语句密集执行,使用Result Cache反而更加糟糕,这是我以前没有注意到的。
--//联想我们生产系统也存在类似的问题,我们有1个判断连接的语句select count(*) from test_connect;
--//在业务高峰它执行可以达到1600次/秒。另外一个简单的select sysdate from dual; 也达到800次/秒。
--//而实际上业务高峰sql语句执行率3000次/秒。这样的2条语句就占了2400次/秒。我以前一直以为将表设置
--//为result cache,可能提高执行效率,还是通过例子测试看看。

1.环境:
SCOTT@book> @ ver1
PORT_STRING                    VERSION        BANNER
------------------------------ -------------- --------------------------------------------------------------------------------
x86_64/Linux 2.4.xx            11.2.0.4.0     Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production

SCOTT@book> show parameter job
NAME                TYPE    VALUE
------------------- ------- ------
job_queue_processes integer 200

SCOTT@book> select * from v$latchname where name like 'Result Cache%';
LATCH# NAME                          HASH
------ ----------------------- ----------
   436 Result Cache: RC Latch  1054203712
   437 Result Cache: SO Latch   986859868
   438 Result Cache: MB Latch   995186388
--//我看到Result Cache名字与作者的不同,命名为Result Cache: RC Latch。

SCOTT@book> select name,gets from v$latch where lower(name) like '%result cache%';
NAME                                 GETS
------------------------------ ----------
Result Cache: RC Latch                  0
Result Cache: SO Latch                  0
Result Cache: MB Latch                  0

SCOTT@book> select count(*) from v$latch_children where lower(name) like '%result cache%';
  COUNT(*)
----------
         0

--//可以注意一个细节,Result Cache没有children latch。也仅仅1个Result Cache: RC Latch 父latch。从这里也可以看出如果
--//做了result cache的表,多个用户并发执行,可能反而不能获得好的性能,可能出现大量的Result Cache: RC Latch争用的情况.

2.建立测试例子:

create table t as select rownum id from dual ;
create unique index pk_t on t(id);
--//分析略。

SCOTT@book> create table job_times ( sid   number, time_ela number);
Table created.

--//按照源链接的例子修改如下:
create or replace procedure do_work(
 p_iterations in number
) is
 l_rowid  rowid;
 v_t number;
begin
 insert into job_times
  values (sys_context('userenv', 'sid'), dbms_utility.get_time)
  returning rowid into l_rowid;

for i in 1 .. p_iterations
 loop
     select count(*) into v_t from t;
 end loop;

update job_times set
   time_ela=dbms_utility.get_time-time_ela
  where rowid=l_rowid;
 commit;
end;
/

3.测试:
--//首先测试不做result cache的情况:
--//alter table t result_cache (mode default);

declare
 l_job number;
begin
 for i in 1 .. 50
 loop
  dbms_job.submit(
   job => l_job,
   what => 'do_work(1000000);'
  );
 end loop;
end;
/

SCOTT@book> commit ;
Commit complete.

--//注意一定要写提交,不然dbms_job.submit要等很久才执行。

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
        50        9235.1        461755

4.测试:

--///测试做result cache的情况,为了测试的准确,我重启数据库。
SCOTT@book> delete from job_times;
50 rows deleted.

SCOTT@book> commit ;
Commit complete.

SCOTT@book> alter table t result_cache (mode force);
Table altered.

--//重启数据库.

SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';
NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME
------------------------------ ---------- ---------- ---------- ----------
Result Cache: RC Latch                  0          0          0          0
Result Cache: SO Latch                  0          0          0          0
Result Cache: MB Latch                  0          0          0          0

declare
 l_job number;
begin
 for i in 1 .. 50
 loop
  dbms_job.submit(
   job => l_job,
   what => 'do_work(100000);'
  );
 end loop;
end;
/

SCOTT@book> commit ;
Commit complete.

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
        50       7135.96        356798

SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';
NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME
------------------------------ ---------- ---------- ---------- ----------
Result Cache: RC Latch           54232541    3499238          0          0
Result Cache: SO Latch                202          0          0          0
Result Cache: MB Latch                  0          0          0          0

--//很明显,即使存在Result Cache: RC Latch的争用,但是WAIT_TIME=0,不过我发现这样测试的一个缺点,就是50个job并不是同时运行.
--//$ ps -ef | grep ora_[j]|wc ,看看数量是不断增加的过程.
--//而且采用Result Cache后效果还是增强的.

5.换一个方式测试:
SCOTT@book> delete from job_times;
53 rows deleted.

SCOTT@book> commit ;
Commit complete.

--//设置result_cache=default
SCOTT@book> alter table t result_cache (mode default);
Table altered.

$ seq 50 | xargs -I{} echo 'sqlplus -s -l scott/book <<< "execute do_work(1000000)" & '| bash

--//等全部完成...

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
        50      10588.26        529413

SCOTT@book> delete from job_times;
50 rows deleted.

SCOTT@book> commit ;
Commit complete.

--//设置result_cache=force
SCOTT@book> alter table t result_cache (mode force);
Table altered.

$ seq 50 | xargs -I{} echo 'sqlplus -s -l  scott/book <<< "execute do_work(1000000)" & '| bash

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
        50       8573.28        428664
--//可以看到即使这样大并发,采用result cache还是要快许多,没有遇到作者的情况.
--//可以11GR2做了一些改进,不会遇到这样的情况.

SCOTT@book> column name format a30
SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';
NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME
------------------------------ ---------- ---------- ---------- ----------
Result Cache: RC Latch          103461569    7263987          0          0
Result Cache: SO Latch                302          0          0          0
Result Cache: MB Latch                  0          0          0          0

6.不过当我拿作者的最后的例子做最后的测试发现,使用result cache慢很多.

SCOTT@book> create cluster hc ( n number(*,0)) single table hashkeys 15000 size 230;
Cluster created.

SCOTT@book> create table hc_t ( n number(*,0), v varchar2(200)) cluster hc (n);
Table created.

SCOTT@book> insert into hc_t select level, dbms_random.string('p', 200) from dual connect by level <= 10000;
10000 rows created.

SCOTT@book> commit;
Commit complete.

--//分析表略.

All we need now is two procedures, one with a regular select and another with a cached select:

create or replace procedure do_hc(
 p_iterations in number
) is
 l_rowid  rowid;
 l_n number;
begin
 insert into job_times
  values (sys_context('userenv', 'sid'), dbms_utility.get_time)
  returning rowid into l_rowid;

for i in 1 .. p_iterations
 loop
  l_n:=trunc(dbms_random.value(1, 10000));
  for cur in (select * from hc_t where n=l_n)
  loop
   null;
  end loop;
 end loop;

update job_times set
   time_ela=dbms_utility.get_time-time_ela
  where rowid=l_rowid;
end;
/

Procedure created.

create or replace procedure do_rc(
 p_iterations in number
) is
 l_rowid  rowid;
 l_n number;
begin
 insert into job_times
  values (sys_context('userenv', 'sid'), dbms_utility.get_time)
  returning rowid into l_rowid;

for i in 1 .. p_iterations
 loop
  l_n:=trunc(dbms_random.value(1, 10000));
  for cur in (select /*+ result_cache */ * from hc_t where n=l_n)
  loop
   null;
  end loop;
 end loop;

update job_times set
   time_ela=dbms_utility.get_time-time_ela
  where rowid=l_rowid;
end;
/

Procedure created.

The hash cluster will go first:

SCOTT@book> delete from job_times;
4 rows deleted.

SQL> commit;
Commit complete.

declare
 l_job number;
begin
 for i in 1 .. 4
 loop
  dbms_job.submit(
   job => l_job,
   what => 'do_hc(100000);'
    );
 end loop;
end;
/

PL/SQL procedure successfully completed.

SCOTT@book> commit ;
Commit complete.

--allow jobs to complete

SCOTT@book> select case grouping(sid) when 1 then 'Total:' else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));
SID      ELA
------- ----
41       446
54       437
80       438
94       437
Total:  1758
--//每个测试仅仅需要4秒.

Now let's see if Result Cache can beat those numbers:

SCOTT@book> delete from job_times;
4 rows deleted.

SCOTT@book> commit ;
Commit complete.

SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';
NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME
------------------------------ ---------- ---------- ---------- ----------
Result Cache: RC Latch           20385043     535762          5         94
Result Cache: SO Latch                  9          0          0          0
Result Cache: MB Latch                  0          0          0          0

declare
 l_job number;
begin
 for i in 1 .. 4
 loop
  dbms_job.submit(
   job => l_job,
   what => 'do_rc(100000);'
    );
 end loop;
end;
/

PL/SQL procedure successfully completed.

SCOTT@book> commit ;
Commit complete.

--allow jobs to complete

SCOTT@book> select case grouping(sid) when 1 then 'Total:' else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));
SID       ELA
------ ------
41       3850
54       3853
80       3860
94       3863
Total:  15426
--//我的测试使用Result Cache 更加糟糕!!每个测试需要38秒.而作者的测试两者几乎差不多.作者用 Nothing (almost) 来表达.

SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';
NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME
------------------------------ ---------- ---------- ---------- ----------
Result Cache: RC Latch           21768802    1045691     663187   64314325
Result Cache: SO Latch                 17          0          0          0
Result Cache: MB Latch                  0          0          0          0

--//我开始以为这里有1个将结果集放入共享池的过程,每一次执行都需要放入共享池.再次调用应该会快一些.
create or replace procedure do_rc(
 p_iterations in number
) is
 l_rowid  rowid;
 l_n number;
begin
 insert into job_times
  values (sys_context('userenv', 'sid'), dbms_utility.get_time)
  returning rowid into l_rowid;

for i in 1 .. p_iterations
 loop
  l_n:=trunc(dbms_random.value(1, 10000));
  for cur in (select /*+ result_cache */ * from hc_t where n=l_n)
  loop
   null;
  end loop;
 end loop;

update job_times set
   time_ela=dbms_utility.get_time-time_ela
  where rowid=l_rowid;
end;
/

--//再次执行:
declare
 l_job number;
begin
 for i in 1 .. 4
 loop
  dbms_job.submit(
   job => l_job,
   what => 'do_rc(100000);'
    );
 end loop;
end;
/

PL/SQL procedure successfully completed.
SCOTT@book> commit ;
Commit complete.

SCOTT@book> select case grouping(sid) when 1 then 'Total:' else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));
SID     ELA
----- -----
72     3980
81     3900
96     3936
108    3922
Total 15738

--//问题依旧.我估计不同查询存在select /*+ result_cache */ * from hc_t where n=l_n的情况下,探查Result Cache: RC Latch持有
--//时间很长,导致使用result cache更慢,这样看来result_cache更加适合统计类结果不变的语句.而且绑定变量不要变化很多的情况.

--//换成普通表测试看看:
SCOTT@book> rename  hc_t to hc_tx;
Table renamed.

SCOTT@book> create table hc_t as select * from hc_tx ;
Table created.

SCOTT@book> create unique index i_hc_t on hc_t(n);
Index created.

--//分析表略.
--//调用do_hc的情况如下:
SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
         4         431.5          1726

--//调用do_rc的情况如下:
SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
         4       4027.75         16111

--//结果一样.删除索引在测试看看.
SCOTT@book> drop index i_hc_t ;
Index dropped.

--//调用do_hc的情况如下:
--//delete from job_times;
--//commit ;
SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
         4          4160         16640

--//调用do_rc的情况如下:
--//delete from job_times;
--//commit ;
SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;
  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)
---------- ------------- -------------
         4          3828         15312

--//这个时候result cache优势才显示出来.总之在生产系统使用要注意这个细节,一般result cahe仅仅只读表(dml很少的静态表)外.
--//如果经常使用不同变量查询表,能使用索引的情况,使用result cache毫无优势可言.

[20190214]11g Query Result Cache RC Latches.txt的更多相关文章

  1. [20190214]11g Query Result Cache RC Latches补充.txt

    [20190214]11g Query Result Cache RC Latches补充.txt --//上午测试链接:http://blog.itpub.net/267265/viewspace- ...

  2. oracle 11g 之 result cache

    oracle 11g 之 result cache 今天是2013-10-12,打算最近时间研究一下shared pool的相关原理以及awr报告分析.今天学习一下在oracle 11g shared ...

  3. 11G新特性 -- Result Cache

    共享池存放sql语句的解析和编译版本,以便数据库能快速执行频繁执行的sql语句和plsql. 在11g中,数据库使用result cache来存放sql和plsql的执行结果. result cach ...

  4. [20170824]11G备库启用DRCP连接.txt

    [20170824]11G备库启用DRCP连接.txt --//参考链接:http://blog.itpub.net/267265/viewspace-2099397/blogs.oracle.com ...

  5. orace result cache解析

      (1)   orace 11.2.0.4 在RAC数据库Dataguard切换时,出现少量数据丢失:          解决方案:关闭result cache 功能 或升级数据库版本并安装补丁: ...

  6. GaussDB(for MySQL) :Partial Result Cache,通过缓存中间结果对算子进行加速

    摘要:华为云数据库高级内核技术专家详解GaussDB(for MySQL)Partial Result Cache特性,如何通过缓存中间结果对算子进行加速? 本文分享自华为云社区<GaussDB ...

  7. [20171120]11g select for update skip locked.txt

    [20171120]11g select for update skip locked.txt --//11G在select for update遇到阻塞时可以通过skipped locked跳过阻塞 ...

  8. django+uwsgi+nginx数据表过大引起"out of memory for query result"

    昨天负责的一个项目突然爆“out of memory for query result”. 背景 项目的数据表是保存超过10m的文本数据,通过json方式保存进postgres中,上传一个13m的大文 ...

  9. PL/SQL:these query result are not updateable,include the ROWID to get updateab -----for update

    these query result are not updateable,include the ROWID to get updateab 原因: 其实,选中一个表后,右键,如果选择“query ...

随机推荐

  1. 改善JAVA代码01:考虑静态工厂方法代替构造器

    前言 系列文章:[传送门]   每次开始新的一本书,我都会很开心.新书新心情. 正文 静态工厂方法代替构造器 说起这个,好多可以念叨的.做了一年多的项目,慢慢也有感触. 说起构造器 大家很明白,构造器 ...

  2. 项目ITP(一) 二维码

    前言 系列文章:[传送门] 上几周碌碌无为,不行啊不行啊.博客园,不知道你几时改版.老家了,我不会忘记你呢.呵呵,我也会在os,csdn更新的.每天一搏,不管有用没用. 正文 正文先有项目起步,项目中 ...

  3. XML技术思想

    百科名片: 可扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语 ...

  4. RocketMQ源码 — 四、 Consumer 接收消息过程

    Consumer consumer pull message 订阅 在Consumer启动之前先将自己放到一个本地的集合中,再以后获取消费者的时候会用到,同时会将自己订阅的信息告诉broker 接收消 ...

  5. jsp、jQuery、servlet交互实现登录功能

    做一个web项目,往往需要有一个登录模块,验证用户名和密码之后跳转页面.为了实现更好的交互,往往需要用到 jQuery 等实现一些友好提示.比如用户名或者密码输入为空的时候提示不能为空:点击提交的时候 ...

  6. com.mysql.jdbc.Driver 和 com.mysql.cj.jdbc.Driver

    com.mysql.jdbc.Driver 是 mysql-connector-java 5中的,com.mysql.cj.jdbc.Driver 是 mysql-connector-java 6中的 ...

  7. MySQL系列详解三:MySQL中各类日志详解-技术流ken

    前言 日志文件记录了MySQL数据库的各种类型的活动,MySQL数据库中常见的日志文件有 查询日志,慢查询日志,错误日志,二进制日志,中继日志 .下面分别对他们进行介绍. 查询日志 1.查看查询日志变 ...

  8. Bootstrap-table使用总结(整合版)

    一.什么是Bootstrap-table? 在业务系统开发中,对表格记录的查询.分页.排序等处理是非常常见的,在Web开发中,可以采用很多功能强大的插件来满足要求,且能极大的提高开发效率,本随笔介绍这 ...

  9. tomcat编译项目后,classes文件没有相应的改变;

    tomcat编译项目后,classes文件没有相应的改变: tomcat不能将项目部署到服务器: 1.首先,在tomcat安装目录webapps中将编译后的整个项目删掉,然后再在eclipse将tom ...

  10. 使用PoolingHttpClientConnectionManager解决友盟(umeng)推送在多线程环境推送失败的问题

    在友盟(umeng)提供的服务端推送的sdk中,使用的是apache提供的httpclient.在单线程化境下,httpclient工作没有问题.但是由于umeng的sdk中并未考虑并发的情况,因此很 ...