[SPOJ913]QTREE2 - Query on a tree II【倍增LCA】
题目描述
题目大意
给一棵树,有两种操作:
- 求(u,v)路径的距离。
- 求以u为起点,v为终点的第k的节点.
分析
比较简单的倍增LCA模板题。
首先对于第一问,我们只需要预处理出根节点到各个节点之间的距离,然后倍增LCA求解就可以了。
那么第二问我WA了6发,原来是眼瞎和手残打错了两个字符错掉了。
我们将问题分成3个部分:
- LCA是第k个
- 第k个在u到LCA的路径上
- 第k个在LCA到v的路径上。
首先如果LCA是第k个,那么直接输出。
如果是第二种情况,那么从u开始做倍增,每一次k-(1<<i)就可以了。
小细节:只能将k变成1,模拟可证明。
第三种情况,那么我们的答案就是从v的第(dep[u]+dep[v]-2*dep[lca]+2),模拟可得该式。
ac代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
#define N 20005
struct edge {
int to, nt;
ll w;
}E[N << 1];
ll dis[N];
int f[N][31], H[N], dep[N];
int cnt, n;
void add_edge(int u, int v, ll w) {
E[++ cnt] = (edge){v, H[u], w};
H[u] = cnt;
}
void dfs(int u, int fa, int dist) {
f[u][0] = fa;
dis[u] = dist;
for (int i = 1; i <= 30; i ++)
f[u][i] = f[f[u][i - 1]][i - 1];
for (int e = H[u]; e; e = E[e].nt) {
int v = E[e].to;
if (v == fa) continue;
dep[v] = dep[u] + 1;
dfs(v, u, dist + E[e].w);
}
}
int lca(int u, int v) {
if (dep[u] < dep[v]) swap(u, v);
for (int i = 30; i >= 0; i --)
if (dep[v] <= dep[f[u][i]]) u = f[u][i];
if (u == v) return u;
for (int i = 30; i >= 0; i --)
if (f[u][i] != f[v][i]) {
u = f[u][i];
v = f[v][i];
}
return f[u][0];
}
int solve(int u, int v, int k) {
int Lca = lca(u, v);
if (dep[u] - dep[Lca] + 1 == k) return Lca;
else {
if (dep[u] - dep[Lca] + 1 > k) {
for (int i = 30; i >= 0; i --)
if (k - 1 >= (1 << i)) k -= (1 << i), u = f[u][i];
return u;
}
else {
k = dep[u] + dep[v]- dep[Lca] * 2 - k + 2;
for (int i = 30; i >= 0; i --)
if (k - 1 >= (1 << i)) k -= (1 << i), v = f[v][i];
return v;
}
}
}
int main() {
int cas;
read(cas);
char opt[10];
while (cas --) {
cnt = 0;
ms(H, 0);
ms(dis, 0);
ms(dep, 0);
ms(f, 0);
read(n);
for (int i = 1; i < n; i ++) {
int u, v; ll w;
read(u); read(v); read(w);
add_edge(u, v, w);
add_edge(v, u, w);
}
dep[1] = 1;
dfs(1, 0, 0);
while (1) {
scanf("%s", opt);
if (opt[1] == 'O') break;
if (opt[0] == 'D') {
int u, v;
read(u); read(v);
int Lca = lca(u, v), res;
printf("%lld\n", dis[u] + dis[v] - dis[Lca] * 2);
}
else {
int u, v, k;
read(u); read(v); read(k);
printf("%d\n", solve(u, v, k));
}
}
}
return 0;
}
[SPOJ913]QTREE2 - Query on a tree II【倍增LCA】的更多相关文章
- spoj 913 Query on a tree II (倍增lca)
Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...
- 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- Query on a tree II 倍增LCA
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- LCA SP913 QTREE2 - Query on a tree II
SP913 QTREE2 - Query on a tree II 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点 ...
- SP913 QTREE2 - Query on a tree II
思路 第一个可以倍增,第二个讨论在a到lca的路径上还是lca到b的路径上, 倍增即可 代码 #include <cstdio> #include <algorithm> #i ...
- SPOJ QTREE2 Query on a tree II
传送门 倍增水题…… 本来还想用LCT做的……然后发现根本不需要 //minamoto #include<bits/stdc++.h> using namespace std; #defi ...
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- QTREE2 spoj 913. Query on a tree II 经典的倍增思想
QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...
- SPOJ913 Query on a tree II
Time Limit: 433MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description You are g ...
随机推荐
- 自己实现数据结构系列四---Queue
一.代码部分 1.定义接口: public interface Queue<E> { void enqueue(E e); E dequeue(); E getFront(); int g ...
- 解决scrapy报错:ModuleNotFoundError: No module named 'win32api'
ModuleNotFoundError: No module named 'win32api' 表示win32api未安装 解决办法: 下载对应python版本的win32api,并安装. 下载地址: ...
- mysql 无法退出sql命令行编辑
mysql 无法退出sql命令行编辑 | ANBOBhttp://www.anbob.com/archives/579.html mysql 无法退出sql命令行编辑 - 码农甲乙丙 - CSDN博客 ...
- gethostbyname用法
//会优先查询解析%windir%\system32\drivers\etc\hosts中静态dns表 //一个域名可对应多个IP hostent->h_addr_list ==> 是in ...
- [转帖]漫画趣解Linux内核
漫画趣解Linux内核 https://blog.csdn.net/juS3Ve/article/details/84207142 Linux 内核漫画 今天,我来为大家解读一幅来自 TurnOff. ...
- laravel 循环中子元素使用&符号嵌入到父级,经典版
/**ajax 获取企业名称 * * @param Request $request * * @return \Illuminate\Http\JsonResponse * @author lxw * ...
- MyBatis映射文件4(参数获取#{}和${}/select标签详解[返回类型为list])
参数获取 之前我们都是采用#{}的方式进行参数传递,其实MyBatis还有另外的参数传递方式${} 使用方法相同,但是还是有很大区别的 这里做一个测试: <select id="get ...
- X5中CSS设置
颜色渐变 position:absolute;left:0;top:40%; 效果图 点击导航按钮变化颜色 1.设置按钮class为 btn-link(超链接) 2.为每一个导航按钮增加属性id 3. ...
- SSM+shiro,所有配置文件,详细注释版,自用
spring配置文件applicationContext.xml,放在resources下 <?xml version="1.0" encoding="UTF-8& ...
- python functools.wraps functools.partial实例解析
一:python functools.wraps 实例 1. 未使用wraps的实例 #!/usr/bin/env python # coding:utf-8 def logged(func): de ...