https://blog.csdn.net/hrsstudy/article/details/65447947?utm_source=itdadao&utm_medium=referral

[net]
batch=64 每batch个样本更新一次参数。
subdivisions=8 如果内存不够大,将batch分割为subdivisions个子batch,每个子batch的大小为batch/subdivisions。
在darknet代码中,会将batch/subdivisions命名为batch。
height=416 input图像的高
width=416 Input图像的宽
channels=3 Input图像的通道数
momentum=0.9 动量
decay=0.0005 权重衰减正则项,防止过拟合
angle=0 通过旋转角度来生成更多训练样本
saturation = 1.5 通过调整饱和度来生成更多训练样本
exposure = 1.5 通过调整曝光量来生成更多训练样本
hue=.1 通过调整色调来生成更多训练样本 learning_rate=0.0001 初始学习率
max_batches = 45000 训练达到max_batches后停止学习
policy=steps 调整学习率的policy,有如下policy:CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
steps=100,25000,35000 根据batch_num调整学习率
scales=10,.1,.1 学习率变化的比例,累计相乘 [convolutional]
batch_normalize=1 是否做BN
filters=32 输出多少个特征图
size=3 卷积核的尺寸
stride=1 做卷积运算的步长
pad=1 如果pad为0,padding由 padding参数指定。如果pad为1,padding大小为size/2
activation=leaky 激活函数:
logistic,loggy,relu,elu,relie,plse,hardtan,lhtan,linear,ramp,leaky,tanh,stair [maxpool]
size=2 池化层尺寸
stride=2 池化步进 [convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky [maxpool]
size=2
stride=2 ......
...... ####### [convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky [convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky [route] the route layer is to bring finer grained features in from earlier in the network
layers=-9 [reorg] the reorg layer is to make these features match the feature map size at the later layer.
The end feature map is 13x13, the feature map from earlier is 26x26x512.
The reorg layer maps the 26x26x512 feature map onto a 13x13x2048 feature map
so that it can be concatenated with the feature maps at 13x13 resolution.
stride=2 [route]
layers=-1,-3 [convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky [convolutional]
size=1
stride=1
pad=1
filters=125 region前最后一个卷积层的filters数是特定的,计算公式为filter=num*(classes+5)
5的意义是5个坐标,论文中的tx,ty,tw,th,to
activation=linear [region]
anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 预选框,可以手工挑选,
也可以通过k means 从训练样本中学出
bias_match=1
classes=20 网络需要识别的物体种类数
coords=4 每个box的4个坐标tx,ty,tw,th
num=5 每个grid cell预测几个box,和anchors的数量一致。当想要使用更多anchors时需要调大num,且如果调大num后训练时Obj趋近0的话可以尝试调大object_scale
softmax=1 使用softmax做激活函数
jitter=.2 通过抖动增加噪声来抑制过拟合
rescore=1 暂理解为一个开关,非0时通过重打分来调整l.delta(预测值与真实值的差) object_scale=5 栅格中有物体时,bbox的confidence loss对总loss计算贡献的权重
noobject_scale=1 栅格中没有物体时,bbox的confidence loss对总loss计算贡献的权重
class_scale=1 类别loss对总loss计算贡献的权重
coord_scale=1 bbox坐标预测loss对总loss计算贡献的权重 absolute=1
thresh = .6
random=0 random为1时会启用Multi-Scale Training,随机使用不同尺寸的图片进行训练。

draknet网络配置参数的更多相关文章

  1. 【CentOS】虚拟机网络配置与远程登录

    ////////////////////////////////////11月16日更新////////////////////////////////////////////////////// 一 ...

  2. centos系统修改网络配置注意事项

    这也是无意之中发现的,我在做一个远程修改工控机网络配置的程序, 网络配置参数/etc/sysconfig/network-scripts/ifcfg-enp1s0下面,当然名字可能不一样ifcfg-e ...

  3. Ubuntu中网络配置interfaces与界面网络配置NetworkManager

    [Server版本] 在Ubuntu Server版本中,因为只存有命令行模式,所以要想进行网络参数设置,只能通过修改 /etc/network/interfaces .具体设置方法如下: (1) U ...

  4. Linux系统初学-第三课 Linux网络配置1

    Linux系统初学-第三课 Linux网络配置 1.动态IP配置 配置文件路径 /etc/sysconfig/network-scripts/ ls查看网卡eth0,其中HWADDR值得获取:ifco ...

  5. Linux 入门之网络配置

    查看网络状态 ifconfig 修改网络参数 实验环境centos6.5,其他系统自行百度 ls /etc/sysconfig/network-scripts 显示所有文件, vi /etc/sysc ...

  6. linux配置网卡IP地址命令详细介绍及一些常用网络配置命令

    linux配置网卡IP地址命令详细介绍及一些常用网络配置命令2010-- 个评论 收藏 我要投稿 Linux命令行下配置IP地址不像图形界面下那么方 便,完全需要我们手动配置,下面就给大家介绍几种配置 ...

  7. kafka配置参数

    Kafka为broker,producer和consumer提供了很多的配置参数. 了解并理解这些配置参数对于我们使用kafka是非常重要的.本文列出了一些重要的配置参数. 官方的文档 Configu ...

  8. mha配置参数详解

    mha配置参数详解: 参数名字 是否必须 参数作用域 默认值 示例 hostname Yes Local Only - hostname=mysql_server1, hostname=192.168 ...

  9. Virtual Box和Linux的网络配置盲记

    近来可能在虚拟机重装了Linux的缘故,在用yum安装软件时出现错误,在提示上连接镜像网站时,都是"linux counldn't resolve host"这样的提示.我估计是l ...

随机推荐

  1. Can 't connect to local MySQL server through socket '/tmp/mysql.sock '(2) "

    安装了mysql, 使用命令mysql -u root -p 弹出Can 't connect to local MySQL server through socket '/tmp/mysql.soc ...

  2. 《Spring Boot 入门及前后端分离项目实践》系列介绍

    课程计划 课程地址点这里 本课程是一个 Spring Boot 技术栈的实战类课程,课程共分为 3 个部分,前面两个部分为基础环境准备和相关概念介绍,第三个部分是 Spring Boot 项目实践开发 ...

  3. 使用模块PIL 生成 随机验证码

    --------------默认自己无能,无疑是给失败制造机会!你认为自己是什么样的人,就将成为什么样的人. 要使用PIL模块. 安装: 1 pip3 install pillow 基本使用 1. 创 ...

  4. elasticsearch开启外网访问

    默认情况下,Elastic 只允许本机访问,如果需要远程访问,可以修改 Elastic 安装目录的config/elasticsearch.yml文件,去掉network.host的注释,将它的值改成 ...

  5. Liunx 简单的命令说明

    cd命令在linux中用来切换或者进入目录,路径还分为相对路径和绝对路径 cd 命令:切换当前目录至其他目录 cd /:加上斜杠表示是进入到根目录. pwd命令:查看当前路径. ()cd 进入用户主目 ...

  6. Json详解以及fastjson使用教程

    Json是一种轻量级的数据交换格式,采用一种“键:值”对的文本格式来存储和表示数据,在系统交换数据过程中常常被使用,是一种理想的数据交换语言.在使用Java做Web开发时,不可避免的会遇到Json的使 ...

  7. [转帖]批处理-For详解

    批处理-For详解 https://www.cnblogs.com/DswCnblog/p/5435300.html for 循环的写法 感觉非常好. 今天下午的时候简单测试了下. 多学习提高 非常重 ...

  8. jenkins了解一下,讲一下jenkins这个鬼东西

    一.jenkins是干什么的? jenkins是一个免费的集成工具,它是基于java开发的.用来做自动化部署,傻瓜化操作. 一般的项目部署流程: 开发代码——>功能测试——>打包(使用ma ...

  9. 二叉搜索树的第k个节点

    给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4. = =一看就想到中序遍历 public class Soluti ...

  10. Python 中关于 round 函数的小坑

    参考: http://www.runoob.com/w3cnote/python-round-func-note.html