RNN介绍

  在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Network, CNN)有一定的了解。对于FCNN和CNN来说,他们能解决很多实际问题,但是它们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的 。而在现实生活中,我们输入的向量往往存在着前后联系,即前一个输入和后一个输入是有关联的,比如文本,语音,视频等,因此,我们需要了解深度学习中的另一类重要的神经网络,那就是循环神经网络(Recurrent Neural Network,RNN).

  循环神经网络(Recurrent Neural Network,RNN)依赖于一个重要的概念:序列(Sequence),即输入的向量是一个序列,存在着前后联系。简单RNN的结构示意图如下:



相比于之前的FCNN,RNN的结构中多出了一个自循环部分,即W所在的圆圈,这是RNN的精华所在,它展开后的结构如下:



对于t时刻的输出向量\(o_{t}\),它的输出不仅仅依赖于t时刻的输入向量\(x_{t}\),还依赖于t-1时刻的隐藏层向量\(s_{t-1}\),以下是输出向量\(o_{t}\)的计算公式:

\[s_{t}=f(Ux_{t}+Ws_{t-1})
\]

\[o_{t}=g(Vs_{t})
\]

其中,第二个式子为输出层的计算公式,输出层为全连接层,V为权重矩阵,g为激活函数。第一个式子中,U是输入x的权重矩阵,W是上一次隐藏层值s的输入权重矩阵,f为激活函数。注意到,RNN的所有权重矩阵U,V,W是共享的,这样可以减少计算量。

  本文将会用TensorFlow中已经帮我们实现好的RNN基本函数tf.contrib.rnn.BasicRNNCell(), tf.nn.dynamic_rnn()来实现简单RNN,并且用该RNN来识别MNIST数据集。

MNIST数据集

  MNIST数据集是深度学习的经典入门demo,它是由6万张训练图片和1万张测试图片构成的,每张图片都是28*28大小(如下图),而且都是黑白色构成(这里的黑色是一个0-1的浮点数,黑色越深表示数值越靠近1),这些图片是采集的不同的人手写从0到9的数字。



  在TensorFlow中,已经内嵌了MNIST数据集,笔者已经下载下来了,如下:



  接下来本文将要用MNIST数据集作为RNN应用的一个demo.

RNN大战MNIST数据集

  用CNN来识别MNIST数据集,我们好理解,这是利用了图片的空间信息。可是,RNN要求输入的向量是序列,那么,如何把图片看成是序列呢?

  图片的大小为28*28,我们把每一列向量看成是某一时刻的向量,那么每张图片就是一个序列,里面含有28个向量,每个向量含有28个元素,如下:



  下面给出如何利用TensorFlow来搭建简单RNN,用来识别MNIST数据集,完整的Python代码如下:

# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 获取MNIST数据
mnist = input_data.read_data_sets(r"./MNIST_data", one_hot=True) # 设置RNN结构
element_size = 28
time_steps = 28
num_classes = 10
batch_size = 128
hidden_layer_size = 150 # 输入向量和输出向量
_inputs = tf.placeholder(tf.float32, shape=[None, time_steps, element_size], name='inputs')
y = tf.placeholder(tf.float32, shape=[None, num_classes], name='inputs') # 利用TensorFlow的内置函数BasicRNNCell, dynamic_rnn来构建RNN的基本模块
rnn_cell = tf.contrib.rnn.BasicRNNCell(hidden_layer_size)
outputs, _ = tf.nn.dynamic_rnn(rnn_cell, _inputs, dtype=tf.float32)
Wl = tf.Variable(tf.truncated_normal([hidden_layer_size, num_classes], mean=0,stddev=.01))
bl = tf.Variable(tf.truncated_normal([num_classes],mean=0,stddev=.01)) def get_linear_layer(vector):
return tf.matmul(vector, Wl) + bl # 取输出的向量outputs中的最后一个向量最为最终输出
last_rnn_output = outputs[:,-1,:]
final_output = get_linear_layer(last_rnn_output) # 定义损失函数并用RMSPropOptimizer优化
softmax = tf.nn.softmax_cross_entropy_with_logits(logits=final_output, labels=y)
cross_entropy = tf.reduce_mean(softmax)
train_step = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cross_entropy) # 统计准确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(final_output,1))
accuracy = (tf.reduce_mean(tf.cast(correct_prediction, tf.float32)))*100 sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
# 测试集
test_data = mnist.test.images[:batch_size].reshape((-1, time_steps, element_size))
test_label = mnist.test.labels[:batch_size] # 每次训练batch_size张图片,一共训练3000次
for i in range(3001):
batch_x, batch_y = mnist.train.next_batch(batch_size)
batch_x = batch_x.reshape((batch_size, time_steps, element_size))
sess.run(train_step, feed_dict={_inputs:batch_x, y:batch_y})
if i % 100 == 0:
loss = sess.run(cross_entropy, feed_dict={_inputs: batch_x, y: batch_y})
acc = sess.run(accuracy, feed_dict={_inputs:batch_x, y: batch_y})
print ("Iter " + str(i) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc)) # 在测试集上的准确率
print("Testing Accuracy:", sess.run(accuracy, feed_dict={_inputs:test_data, y:test_label}))

  运行上述代码,输出的结果如下:

Extracting ./MNIST_data\train-images-idx3-ubyte.gz
Extracting ./MNIST_data\train-labels-idx1-ubyte.gz
Extracting ./MNIST_data\t10k-images-idx3-ubyte.gz
Extracting ./MNIST_data\t10k-labels-idx1-ubyte.gz
Iter 0, Minibatch Loss= 2.301171, Training Accuracy= 11.71875
Iter 100, Minibatch Loss= 1.718483, Training Accuracy= 47.65625
Iter 200, Minibatch Loss= 0.862968, Training Accuracy= 71.09375
Iter 300, Minibatch Loss= 0.513068, Training Accuracy= 86.71875
Iter 400, Minibatch Loss= 0.570475, Training Accuracy= 83.59375
Iter 500, Minibatch Loss= 0.254566, Training Accuracy= 92.96875
Iter 600, Minibatch Loss= 0.457989, Training Accuracy= 85.93750
Iter 700, Minibatch Loss= 0.151181, Training Accuracy= 96.87500
Iter 800, Minibatch Loss= 0.171168, Training Accuracy= 94.53125
Iter 900, Minibatch Loss= 0.142494, Training Accuracy= 94.53125
Iter 1000, Minibatch Loss= 0.155114, Training Accuracy= 97.65625
Iter 1100, Minibatch Loss= 0.096007, Training Accuracy= 96.87500
Iter 1200, Minibatch Loss= 0.341476, Training Accuracy= 88.28125
Iter 1300, Minibatch Loss= 0.133509, Training Accuracy= 96.87500
Iter 1400, Minibatch Loss= 0.076408, Training Accuracy= 98.43750
Iter 1500, Minibatch Loss= 0.122228, Training Accuracy= 98.43750
Iter 1600, Minibatch Loss= 0.099382, Training Accuracy= 96.87500
Iter 1700, Minibatch Loss= 0.084686, Training Accuracy= 97.65625
Iter 1800, Minibatch Loss= 0.067009, Training Accuracy= 98.43750
Iter 1900, Minibatch Loss= 0.189703, Training Accuracy= 94.53125
Iter 2000, Minibatch Loss= 0.116077, Training Accuracy= 96.09375
Iter 2100, Minibatch Loss= 0.028867, Training Accuracy= 100.00000
Iter 2200, Minibatch Loss= 0.064198, Training Accuracy= 99.21875
Iter 2300, Minibatch Loss= 0.078259, Training Accuracy= 97.65625
Iter 2400, Minibatch Loss= 0.106613, Training Accuracy= 97.65625
Iter 2500, Minibatch Loss= 0.078722, Training Accuracy= 98.43750
Iter 2600, Minibatch Loss= 0.045871, Training Accuracy= 98.43750
Iter 2700, Minibatch Loss= 0.030953, Training Accuracy= 99.21875
Iter 2800, Minibatch Loss= 0.062823, Training Accuracy= 96.87500
Iter 2900, Minibatch Loss= 0.040367, Training Accuracy= 99.21875
Iter 3000, Minibatch Loss= 0.017787, Training Accuracy= 100.00000
Testing Accuracy: 97.6563

可以看到,用简单RNN来识别MNIST数据集,也能取得很好的效果!

  本次分享到此结束,欢迎大家交流~

注意:本人现已开通微信公众号: 轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

RNN入门(一)识别MNIST数据集的更多相关文章

  1. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

  2. SGD与Adam识别MNIST数据集

    几种常见的优化函数比较:https://blog.csdn.net/w113691/article/details/82631097 ''' 基于Adam识别MNIST数据集 ''' import t ...

  3. 卷积神经网络CNN识别MNIST数据集

    这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: impor ...

  4. mxnet实战系列(一)入门与跑mnist数据集

    最近在摸mxnet和tensorflow.两个我都搭起来了.tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题. 今天把两个平台做了一下对比.同是跑mn ...

  5. 81、Tensorflow实现LeNet-5模型,多层卷积层,识别mnist数据集

    ''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np ...

  6. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  7. 关于入门深度学习mnist数据集前向计算的记录

    import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorfl ...

  8. 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...

  9. 机器学习(2) - KNN识别MNIST

    代码 https://github.com/s055523/MNISTTensorFlowSharp 数据的获得 数据可以由http://yann.lecun.com/exdb/mnist/下载.之后 ...

随机推荐

  1. 出错with root cause

    [背景:] 我自己写了一个项目,主页可以看到一个数据库里的一个应用的users用户表的所有数据,包括用户的年龄,姓名,出生日期等信息.后来又想再增加一个注册功能,写好了之后进行单元测试,结果就出现了w ...

  2. <笔记>字体文件的路径问题

    如果做过虚拟域名,不可以通过127.0.0.1来访问字体文件 改成通过虚拟域名访问,就没问题: 不过更建议使用相对路径

  3. git的命令行操作

    1.初始化本地的git仓库git init,代码存放在这里,git会自动对我们的代码进行管理备份. 2.设置用户信息,设置用户名:git config --global user.name " ...

  4. this用法总结

    在JavaScript中,this关键字可以说是最复杂的机制之一.对this的作用机制缺乏比较深入的理解很容易在实际开发中出现问题. 1.this的作用 为什么要在JavaScript中使用this呢 ...

  5. sphinx-doc的中文搜索

    第一,你的系统需要安装jieba类库, pip install jieba 第二,接下来修改sphinx的conf.py文件,为项目设置为中文的搜索配置. # Language to be used ...

  6. 河北大学python选修课00次作业

    学习python认为挺好玩的一件事.看到很多关于python的东西在网上,看到有这个课,认为只是选修课,别人也可以选,自己想不能被别人落下,别人都会,我不会可不行. 而且认为python是一个很强大的 ...

  7. 【分布式缓存系列】Redis实现分布式锁的正确姿势

    一.前言 在我们日常工作中,除了Spring和Mybatis外,用到最多无外乎分布式缓存框架——Redis.但是很多工作很多年的朋友对Redis还处于一个最基础的使用和认识.所以我就像把自己对分布式缓 ...

  8. spring 读取yaml配置文件

    从Spring框架4.1.0增加了对YAML的支持,Spring框架4.1.0 maven POM具有Snakeyaml依赖性  . 您可以在Spring Boot应用中使用两种方式加载YAML: 1 ...

  9. 第53节:Java当中的IO流(上)

    Java当中的IO流 在Java中,字符串string可以用来操作文本数据内容,字符串缓冲区是什么呢?其实就是个容器,也是用来存储很多的数据类型的字符串,基本数据类型包装类的出现可以用来解决字符串和基 ...

  10. Spark streaming消费Kafka的正确姿势

    前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...