Python 爬虫七 Scrapy
Scrapy
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下
Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 - 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的) - 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面 - 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。 - 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。 - 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。 - 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取
一、安装
Linux:
- pip3 install scrapy
Windows:
- a. pip3 install wheel
- b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
- c. 进入下载目录,执行 pip3 install Twisted‑17.1.‑cp35‑cp35m‑win_amd64.whl
- d. pip3 install scrapy
- e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/
二、基本使用
1、创建项目
- scrapy startproject 项目名称
- - 在当前目录中创建中创建一个项目文件(类似于Django)
- scrapy genspider [-t template] <name> <domain>
- - 穿件爬虫应用
- 如:scrapy gensipider -t basic oldboy oldboy.com
- scrapy gensipider -t xmlfeed autohome autohome.com.cn
- 查看所有命令:scrapy gensipider -l
- 查看模板命令:scrapy gensipider -d 模板名称
- scrapy list
- - 展示爬虫应用列表
- scrapy crawl 爬虫应用名称
- - 运行单独爬虫应用
创建实例:
- 创建项目
- shuais-MacBook-Pro:~ dandyzhang$ scrapy startproject scrapy_test
- New Scrapy project 'scrapy_test', using template directory '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scrapy/templates/project', created in:
- /Users/dandyzhang/scrapy_test
- You can start your first spider with:
- cd scrapy_test
- scrapy genspider example example.com
- 进入创建的项目
- shuais-MacBook-Pro:~ dandyzhang$ cd scrapy_test/
- 创建爬虫应用1
- shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy genspider chouti chouti.com
- Created spider 'chouti' using template 'basic' in module:
- scrapy_test.spiders.chouti
- 创建爬虫应用2
- shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy genspider cnblogs cnblogs.com
- Created spider 'cnblogs' using template 'basic' in module:
- scrapy_test.spiders.cnblogs
2、项目结构以及爬虫应用简介
上面的实例,创建好了一个完整的项目:
文件说明:
- scrapy.cfg 项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
- items.py 设置数据存储模板,用于结构化数据,如:Django的Model
- pipelines 数据处理行为,如:一般结构化的数据持久化
- settings.py 配置文件,如:递归的层数、并发数,延迟下载等
- spiders 爬虫目录,如:创建文件,编写爬虫规则
注意:一般创建爬虫文件时,以网站域名命名
此时,发现之前根据命令创建了2个应用都存储在spiders文件夹内,现在以其中的chouti为例,来撰写第一个爬虫
- import scrapy
- class ChoutiSpider(scrapy.Spider):
- name = 'chouti' # 外部scrapy调用的爬虫应用名称
- allowed_domains = ['chouti.com'] # 允许的域名
- start_urls = ['http://dig.chouti.com/'] # 起始url
- def parse(self, response): # 访问起始url并获取结果后的回调函数
- print(response.text) # response就是返回结果
查看结果:
如果是window用户可能会遇到编码问题:
- import sys,os
- sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')
3、小试牛刀
如上,需要在抽屉网中抓去热榜的所有标题,图中的框已经标好,从content-list入手,抓取每一个item中class为part2的share-title
- class ChoutiSpider(scrapy.Spider):
- name = 'chouti'
- allowed_domains = ['chouti.com']
- start_urls = ['http://dig.chouti.com/']
- def parse(self, response):
- """
- 1.获取想要的内容
- 2.如果分页,继续下载内容
- :param response:
- :return:
- """
- # 获取当前页的内容
- item_list = Selector(response=response).xpath('//div[@id="content-list"]/div[@class="item"]')
- # /子标签
- # //起始位置时,是在全局进行查找;非起始位置是在当前标签的子子孙孙内部找
- # ./当前对象下面找
- # 获取index为0的对象中的第一个满足条件的文本
- # obj = item_list[0].xpath('./div[@class="news-content"]//div[@class="part2"]/@share-title').extract_first()
- obj_list = item_list.xpath('./div[@class="news-content"]//div[@class="part2"]/@share-title').extract()
- print(obj_list) # 获取的结果是列表
如果抓取的是标签的内容而不是属性的话:
- obj = item_list[].xpath('./div[@class="news-content"]//div[@class="show-content"]/text()').extract()
执行命令:
- shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy crawl chouti --nolog
结果:
此时,如果分页内的也需要抓取呢?
首先,先获取以下分页内部的url:
- import scrapy
- from scrapy.selector import Selector, HtmlXPathSelector
- from scrapy.http import Request
- class ChoutiSpider(scrapy.Spider):
- name = 'chouti'
- allowed_domains = ['chouti.com']
- start_urls = ['http://dig.chouti.com/']
- def parse(self, response):
- """
- 1.获取想要的内容
- 2.如果分页,继续下载内容
- :param response:
- :return:
- """
- url_list = Selector(response=response).xpath('//div[@id="dig_lcpage"]//a/@href').extract()
- print(url_list)
运行结果:
- shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy crawl chouti --nolog
- ['/all/hot/recent/2', '/all/hot/recent/3', '/all/hot/recent/4', '/all/hot/recent/5', '/all/hot/recent/6', '/all/hot/recent/7', '/all/hot/recent/8', '/all/hot/recent/9', '/all/hot/recent/10', '/all/hot/recent/2']
此时需要先拼接url,然后抓取数据:
- # -*- coding: utf-8 -*-
- import scrapy
- from scrapy.selector import Selector, HtmlXPathSelector
- from scrapy.http import Request # 这里导入了一个Request,用来迭代
- class ChoutiSpider(scrapy.Spider):
- name = 'chouti'
- allowed_domains = ['chouti.com']
- start_urls = ['http://dig.chouti.com/']
- def parse(self, response):
- """
- 1.获取想要的内容
- 2.如果分页,继续下载内容
- :param response:
- :return:
- """
- item_list = Selector(response=response).xpath('//div[@id="content-list"]/div[@class="item"]')
- obj_list = item_list.xpath('./div[@class="news-content"]//div[@class="part2"]/@share-title').extract()
- print(obj_list)
- url_list = Selector(response=response).xpath('//div[@id="dig_lcpage"]//a/@href').extract()
- for url in url_list:
- url = 'http://dig.chouti.com' + url
- yield Request(url=url) # 迭代处理
这里可以在settings配置文件内设置下钻的深度:
- DEPTH_LIMIT = 2
可以发现产生来了多个列表文件:
a、Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
b、HtmlXpathSelector用于结构化HTML代码并提供选择器功能
4、选择器
- from scrapy.selector import Selector, HtmlXPathSelector # 一个是新版本,一个是旧版本,后面会被取消
- from scrapy.http import HtmlResponse
- html = """<!DOCTYPE html>
- <html>
- <head lang="en">
- <meta charset="UTF-8">
- <title></title>
- </head>
- <body>
- <ul>
- <li class="item-"><a id='i1' href="link.html">first item</a></li>
- <li class="item-0"><a id='i2' href="llink.html">first item</a></li>
- <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li>
- </ul>
- <div><a href="llink2.html">second item</a></div>
- </body>
- </html>
- """
- response = HtmlResponse(url='http://example.com', body=html, encoding='utf-8')
- # hxs = HtmlXPathSelector(response) # 对象
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a') # 取全局内所有a标签
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[2]') # 取全局内index为2的a标签
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[@id]') # 取全局所有有id属性的a标签
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[@id="i1"]') # 取全局所有id="i1"的a标签
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]') # 取全局所有href为link.html并且id为i1的a标签
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[contains(@href, "link")]') # 取全局所有href有link字符串的a标签
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]') # 取全局所有href以link字符串开头的a标签
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]') # 正则 取全局所有a标签,id属性是i+数字的
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract() # 正则 取全局所有a标签,id属性是i+数字的 内部的值
- # print(hxs)
- # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract() # 正则 取全局所有a标签,id属性是i+数字的 href属性值
- # print(hxs)
- # hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract()
- # print(hxs)
- # hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()
- # print(hxs)
- # ul_list = Selector(response=response).xpath('//body/ul/li')
- # for item in ul_list:
- # v = item.xpath('./a/span')
- # # 或
- # # v = item.xpath('a/span')
- # # 或
- # # v = item.xpath('*/a/span')
- # print(v)
抽屉点赞:
- import scrapy
- from scrapy.selector import HtmlXPathSelector
- from scrapy.http.request import Request
- from scrapy.http.cookies import CookieJar
- from scrapy import FormRequest
- class ChouTiSpider(scrapy.Spider):
- # 爬虫应用的名称,通过此名称启动爬虫命令
- name = "chouti"
- # 允许的域名
- allowed_domains = ["chouti.com"]
- cookie_dict = {}
- has_request_set = {} # 发送过请求的集合
- def start_requests(self): # 继承Spider,Spider内部先执行的是start_requests方法
- url = 'http://dig.chouti.com/'
- # return [Request(url=url, callback=self.login)]
- yield Request(url=url, callback=self.login) # 爬取网页,指定回调函数;其实Request默认的callback是parse,
- # 这也解释了为什么新建的爬虫应用内部都是def parse(self, response):方法。可以像这样重写start_requests方法,指定callback
- def login(self, response):
- cookie_jar = CookieJar()
- cookie_jar.extract_cookies(response, response.request)
- for k, v in cookie_jar._cookies.items():
- for i, j in v.items():
- for m, n in j.items():
- self.cookie_dict[m] = n.value
- req = Request(
- url='http://dig.chouti.com/login',
- method='POST',
- headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
- body='phone=8615131255089&password=pppppppp&oneMonth=1',
- cookies=self.cookie_dict,
- callback=self.check_login # 指定回调函数
- )
- yield req
- def check_login(self, response):
- req = Request(
- url='http://dig.chouti.com/',
- method='GET',
- callback=self.show, # 定义callback
- cookies=self.cookie_dict,
- dont_filter=True # 不被去重过滤
- )
- yield req
- def show(self, response):
- # print(response)
- hxs = HtmlXPathSelector(response) # 实例化标签对象
- news_list = hxs.select('//div[@id="content-list"]/div[@class="item"]')
- for new in news_list:
- # temp = new.xpath('div/div[@class="part2"]/@share-linkid').extract()
- link_id = new.xpath('*/div[@class="part2"]/@share-linkid').extract_first() # 获取id
- yield Request( # 点赞
- url='http://dig.chouti.com/link/vote?linksId=%s' %(link_id,),
- method='POST',
- cookies=self.cookie_dict,
- callback=self.do_favor
- )
- # 获取分页的网址
- page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract()
- for page in page_list:
- page_url = 'http://dig.chouti.com%s' % page
- import hashlib
- hash = hashlib.md5()
- hash.update(bytes(page_url,encoding='utf-8'))
- key = hash.hexdigest()
- if key in self.has_request_set: # 加密key请求在已请求的列表中,则pass
- pass
- else: # 如果没有发送请求,继续发送
- self.has_request_set[key] = page_url
- yield Request(
- url=page_url,
- method='GET',
- callback=self.show
- )
- def do_favor(self, response):
- print(response.text) # 打印以下点赞之后的返回值
处理Cookie:
- import scrapy
- from scrapy.http.response.html import HtmlResponse
- from scrapy.http import Request
- from scrapy.http.cookies import CookieJar
- class ChoutiSpider(scrapy.Spider):
- name = "chouti"
- allowed_domains = ["chouti.com"]
- start_urls = (
- 'http://www.chouti.com/',
- )
- def start_requests(self):
- url = 'http://dig.chouti.com/'
- yield Request(url=url, callback=self.login, meta={'cookiejar': True}) # 如此设置cookiejar,可以自动获取cookie
- def login(self, response):
- print(response.headers.getlist('Set-Cookie'))
- req = Request(
- url='http://dig.chouti.com/login',
- method='POST',
- headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
- body='phone=8613121758648&password=woshiniba&oneMonth=1',
- callback=self.check_login,
- meta={'cookiejar': True}
- )
- yield req
- def check_login(self, response):
- print(response.text)
注意:settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。
这里对于上面的代码简单解释下,基础流程:
首先最初创建的爬虫应用的源码:继承了Spider类,该类内部有一个start_requests方法,这是爬虫执行的起始函数,如果start_urls不为空,爬取此url。即上图的yield Request(url, dont_filter=True)、这也可以解释为什么继续爬取分页的url时,写的是yield Request(url)。此时大家也许不明白,即start_urls不为空,为什么会执行parse函数呢?其实在开始执行的yield Request中有一个默认参数是callback=parse,所以初始化的爬虫应用的流程就一目了然了。
现在解释下点赞的爬虫,前面提到继承了Spider类,第一个执行的是start_requests,此时既然继承了父类Spider,就可以对此类进行重写,已经知道了其实位置是start_requests,毫无疑问重写此方法,内部指定url(外部的start_urls删除),执行爬虫则调用Request方法,指定callback函数,这样根据callback也就形成了一个串行爬虫链。另外要提到的一点yield都知道是一个生成器,在Scrapy内部,spider内部调度yield Request只是其中的一部分,用来爬虫。另外一部分也是通过yield调用来做持久化的,即对于爬取的数据的处理跟保存。下面会讲到这部分,这里先提一下。
5、格式化处理
之前的实例只是一些简单的处理,所以在parse方法中直接处理。如果想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。
回到最原始的parse代码,抓取以下热榜标题跟链接
chouti.py
- import scrapy
- from scrapy.selector import HtmlXPathSelector, Selector
- from ..items import ScrapyTestItem
- class ChoutiSpider(scrapy.Spider):
- name = 'chouti'
- allowed_domains = ['chouti.com']
- start_urls = ['http://dig.chouti.com/']
- def parse(self, response):
- item_list = Selector(response=response).xpath('//div[@id="content-list"]/div[@class="item"]')
- for item in item_list:
- t = item.xpath('./div[@class="news-content"]//div[@class="part1"]/a/text()').extract()
- h = item.xpath('./div[@class="news-content"]//div[@class="part1"]/a/@href').extract()
- item_obj = ScrapyTestItem(title=t, href=h) # 调用Item
- yield item_obj # 这里指向了另一个调度器,持久化调度器
items.py
- import scrapy
- class ScrapyTestItem(scrapy.Item):
- # define the fields for your item here like: 定义要抓取保存的字段
- title = scrapy.Field()
- href = scrapy.Field()
pipelines.py
- class ScrapyTestPipeline(object):
- def process_item(self, item, spider):
- print(item, spider)
- return item
这里需要注意的是跟Django一样,需要注册以下:
在settings文件里面找到下面这段话,去掉注释,其中300代表优先级,稍后进行这个数字的测试。
- ITEM_PIPELINES = {
- 'scrapy_test.pipelines.ScrapyTestPipeline': 300,
- }
此时执行爬虫:
语法没写好,抓到2个href了,不要在意这些细节。
此时,了解了yield的另一个功能,当yield Item_obj是就会调度pipelines进行持久化,当然上面我们只是打印了以下结果,可以看到item对应的是字段,spider是爬虫应用函数方法。
所以对于不同的要求可以直接在pipelines里面写到:
- class ScrapyTestPipeline1(object):
- def process_item(self, item, spider):
- print('step 1 输出到屏幕')
- return item
- class ScrapyTestPipeline2(object):
- def process_item(self, item, spider):
- print('step 2 保存到文件')
- return item
- class ScrapyTestPipeline3(object):
- def process_item(self, item, spider):
- print('step 3 保存到数据库')
- return item
注册以下:
- ITEM_PIPELINES = {
- 'scrapy_test.pipelines.ScrapyTestPipeline1': 100,
- 'scrapy_test.pipelines.ScrapyTestPipeline2': 200,
- 'scrapy_test.pipelines.ScrapyTestPipeline3': 300,
- }
执行结果、注意顺序
假设step3的类没有注册,就只会执行step1 & step2。
那么、如果想在执行到某一个pipeline类终止怎么办?
- from scrapy.exceptions import DropItem # 导入DropItem
- class ScrapyTestPipeline1(object):
- def process_item(self, item, spider):
- print('step 1 输出到屏幕')
- raise DropItem()
- class ScrapyTestPipeline2(object):
- def process_item(self, item, spider):
- print('step 2 保存到文件')
- return item
- class ScrapyTestPipeline3(object):
- def process_item(self, item, spider):
- print('step 3 保存到数据库')
- return item
那spider参数是干嘛用的呢?
假设,抓取的name是chouti的时候,不让其继续执行后续的:
- from scrapy.exceptions import DropItem
- class ScrapyTestPipeline1(object):
- def process_item(self, item, spider):
- print('step 1 输出到屏幕')
- if spider.name == 'chouti':
- raise DropItem()
- return item
- class ScrapyTestPipeline2(object):
- def process_item(self, item, spider):
- print('step 2 保存到文件')
- return item
- class ScrapyTestPipeline3(object):
- def process_item(self, item, spider):
- print('step 3 保存到数据库')
- return item
pipelines更多:
假设需要将数据写入文件,首先想到的方法一定是
- class ScrapyTestPipeline(object):
- def process_item(self, item, spider):
- with open('***', 'a+') as f:
- f.write('***')
- print('step 2 保存到文件')
- return item
但是这样会在一次爬虫中频繁的打开文件,浪费IO
此时引入另外的方法
- from scrapy.exceptions import DropItem
- class CustomPipeline(object):
- def __init__(self,v): # v就是类方法返回的参数val
- self.value = v
- print(self.value)
- def process_item(self, item, spider):
- # 操作并进行持久化
- # return表示会被后续的pipeline继续处理
- print('****操作****')
- return item
- # 表示将item丢弃,不会被后续pipeline处理
- # raise DropItem()
- @classmethod
- def from_crawler(cls, crawler):
- """
- 初始化时候,用于创建pipeline对象
- :param crawler:
- :return:
- """
- val = crawler.settings.get('MYPATH') # 类方法获取配置文件参数
- print(val)
- return cls(val)
- def open_spider(self,spider):
- """
- 爬虫开始执行时,调用
- :param spider:
- :return:
- """
- print('')
- def close_spider(self,spider):
- """
- 爬虫关闭时,被调用
- :param spider:
- :return:
- """
- print('')
此时在setting中配置以下文件地址就可以了:
- MYPATH = '***path***'
settings参数必须全部大写,小写测试失败,未抓取到。
执行结果
所以以后,可以在from_crawler里面通过参数定义文件名,setting文件设置文件路径,然后打开文件,中间对文件句柄进行追加,一次打开,一次关闭,避免重复操作。
6、中间件
自动化里面Django blog其实已经讲过了中间件的一个大致流程,其实在scrapy中中间件的核心依然是同样的。
上图是Django中中间件的一个基本概念图,而在scrapy中则是:
爬虫中间件
- class SpiderMiddleware(object):
- def process_spider_input(self,response, spider):
- """
- 下载完成,执行,然后交给parse处理(默认有start_urls时,parse时默认的callback函数)
- :param response:
- :param spider:
- :return:
- """
- pass
- def process_spider_output(self,response, result, spider):
- """
- spider处理完成,返回时调用
- :param response:
- :param result:
- :param spider:
- :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
- """
- return result
- def process_spider_exception(self,response, exception, spider):
- """
- 异常调用
- :param response:
- :param exception:
- :param spider:
- :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
- """
- return None
- def process_start_requests(self,start_requests, spider):
- """
- 爬虫启动时调用
- :param start_requests:
- :param spider:
- :return: 包含 Request 对象的可迭代对象、丢给调度器分配下载或者是解析文本
- """
- return start_requests
首先爬虫引擎启动全局,到spider的start_urls抓取数据返回start_request,放到任务调度器里面,下载器去任务调度器抓取任务执行。
下载器中间件
- class DownMiddleware1(object):
- def process_request(self, request, spider):
- """
- 请求需要被下载时,经过所有下载器中间件的process_request调用
- :param request:
- :param spider:
- :return:
- None,继续后续中间件去下载;
- Response对象,停止process_request的执行,开始执行process_response
- Request对象,停止中间件的执行,将Request重新调度器
- raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
- """
- pass
- def process_response(self, request, response, spider):
- """
- spider处理完成,返回时调用
- :param response:
- :param result:
- :param spider:
- :return:
- Response 对象:转交给其他中间件process_response
- Request 对象:停止中间件,request会被重新调度下载
- raise IgnoreRequest 异常:调用Request.errback
- """
- print('response1')
- return response
- def process_exception(self, request, exception, spider):
- """
- 当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
- :param response:
- :param exception:
- :param spider:
- :return:
- None:继续交给后续中间件处理异常;
- Response对象:停止后续process_exception方法
- Request对象:停止中间件,request将会被重新调用下载
- """
- return None
7、自定制命令
a、在spiders同级创建任意目录,如:commands
b、在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)-- 如果创建多个文件,其实是相当于创建了多个命令
- from scrapy.commands import ScrapyCommand
- from scrapy.utils.project import get_project_settings
- class Command(ScrapyCommand):
- requires_project = True
- def syntax(self):
- return '[options]'
- def short_desc(self):
- return 'Runs all of the spiders'
- def run(self, args, opts):
- spider_list = self.crawler_process.spiders.list() # 去spiders文件夹下获取所有的爬虫文件
- for name in spider_list:
- self.crawler_process.crawl(name, **opts.__dict__) # 为所有的爬虫创建任务
- self.crawler_process.start() # 并发的开始执行
crawlall.py
c、在settings.py 中添加配置 COMMANDS_MODULE = '项目名称.目录名称'
d、在项目目录执行命令:scrapy crawlall
PS:scrapy的源码,建议从run开始着手看。
单个爬虫:
- import sys
- from scrapy.cmdline import execute
- if __name__ == '__main__':
- execute(["scrapy","github","--nolog"])
8、自定义扩展
自定义扩展时,利用信号在指定位置注册制定操作(跟Django的信号很相似)
- from scrapy import signals
- class MyExtension(object):
- def __init__(self, value):
- self.value = value
- @classmethod
- def from_crawler(cls, crawler):
- val = crawler.settings.get('MMMM')
- ext = cls(val)
- crawler.signals.connect(ext.openn, signal=signals.spider_opened)
- crawler.signals.connect(ext.closee, signal=signals.spider_closed)
- return ext
- def openn(self, spider):
- print('open')
- def closee(self, spider):
- print('close')
- """
- Scrapy signals
- These signals are documented in docs/topics/signals.rst. Please don't add new
- signals here without documenting them there.
- """
- engine_started = object()
- engine_stopped = object()
- spider_opened = object()
- spider_idle = object()
- spider_closed = object()
- spider_error = object()
- request_scheduled = object()
- request_dropped = object()
- response_received = object()
- response_downloaded = object()
- item_scraped = object()
- item_dropped = object()
- # for backwards compatibility
- stats_spider_opened = spider_opened
- stats_spider_closing = spider_closed
- stats_spider_closed = spider_closed
- item_passed = item_scraped
- request_received = request_scheduled
爬虫的所有信号
跟pipelines一样,需要注册类在settings文件里。
9、避免重复访问
scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:
- DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'
- DUPEFILTER_DEBUG = False
- JOBDIR = "保存范文记录的日志路径,如:/root/" # 最终路径为 /root/requests.seen
- class RepeatUrl:
- def __init__(self):
- self.visited_url = set()
- @classmethod
- def from_settings(cls, settings):
- """
- 初始化时,调用
- :param settings:
- :return:
- """
- return cls()
- def request_seen(self, request):
- """
- 检测当前请求是否已经被访问过
- :param request:
- :return: True表示已经访问过;False表示未访问过
- """
- if request.url in self.visited_url:
- return True
- self.visited_url.add(request.url)
- return False
- def open(self):
- """
- 开始爬去请求时,调用
- :return:
- """
- print('open replication')
- def close(self, reason):
- """
- 结束爬虫爬取时,调用
- :param reason:
- :return:
- """
- print('close replication')
- def log(self, request, spider):
- """
- 记录日志
- :param request:
- :param spider:
- :return:
- """
- print('repeat', request.url)
- 自定义URL去重操作
自定义url去重
10、settings其他设置
- # -*- coding: utf-8 -*-
- # Scrapy settings for step8_king project
- #
- # For simplicity, this file contains only settings considered important or
- # commonly used. You can find more settings consulting the documentation:
- #
- # http://doc.scrapy.org/en/latest/topics/settings.html
- # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
- # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
- # 1. 爬虫名称
- BOT_NAME = 'scrapy_test'
- # 2. 爬虫应用路径
- SPIDER_MODULES = ['scrapy_test.spiders']
- NEWSPIDER_MODULE = 'scrapy_test.spiders'
- # Crawl responsibly by identifying yourself (and your website) on the user-agent
- # 3. 客户端 user-agent请求头 通用配置,也可以在Request内部配置
- # USER_AGENT = 'scrapy_test (+http://www.yourdomain.com)'
- # Obey robots.txt rules
- # 4. 禁止爬虫配置
- # ROBOTSTXT_OBEY = False
- # Configure maximum concurrent requests performed by Scrapy (default: 16)
- # 5. 并发请求数
- # CONCURRENT_REQUESTS = 4
- # Configure a delay for requests for the same website (default: 0)
- # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
- # See also autothrottle settings and docs
- # 6. 延迟下载秒数(反爬虫,所有的爬虫都是延迟2秒)
- # DOWNLOAD_DELAY = 2
- # The download delay setting will honor only one of:
- # 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
- # CONCURRENT_REQUESTS_PER_DOMAIN = 2
- # 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
- # CONCURRENT_REQUESTS_PER_IP = 3
- # Disable cookies (enabled by default)
- # 8. 是否支持cookie,cookiejar进行操作cookie
- # COOKIES_ENABLED = True
- # COOKIES_DEBUG = True
- # Disable Telnet Console (enabled by default)
- # 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
- # 使用telnet ip port ,然后通过命令操作
- # TELNETCONSOLE_ENABLED = True
- # TELNETCONSOLE_HOST = '127.0.0.1'
- # TELNETCONSOLE_PORT = [6023,]
- # 10. 默认请求头
- # Override the default request headers:
- # DEFAULT_REQUEST_HEADERS = {
- # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
- # 'Accept-Language': 'en',
- # }
- # Configure item pipelines
- # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
- # 11. 定义pipeline处理请求
- # ITEM_PIPELINES = {
- # 'scrapy_test.pipelines.JsonPipeline': 700,
- # 'scrapy_test.pipelines.FilePipeline': 500,
- # }
- # 12. 自定义扩展,基于信号进行调用
- # Enable or disable extensions
- # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
- # EXTENSIONS = {
- # # 'scrapy_test.extensions.MyExtension': 500,
- # }
- # 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
- # DEPTH_LIMIT = 3
- # 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo
- # 后进先出,深度优先
- # DEPTH_PRIORITY = 0
- # SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
- # SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
- # 先进先出,广度优先
- # DEPTH_PRIORITY = 1
- # SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
- # SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'
- # 15. 调度器队列 queue
- # SCHEDULER = 'scrapy.core.scheduler.Scheduler'
- # from scrapy.core.scheduler import Scheduler
- # 16. 访问URL去重
- # DUPEFILTER_CLASS = 'scrapy_test.duplication.RepeatUrl'
- # Enable and configure the AutoThrottle extension (disabled by default)
- # See http://doc.scrapy.org/en/latest/topics/autothrottle.html
- """
- 17. 自动限速算法
- from scrapy.contrib.throttle import AutoThrottle
- 自动限速设置
- 1. 获取最小延迟 DOWNLOAD_DELAY
- 2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY
- 3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY
- 4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间
- 5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCY
- target_delay = latency / self.target_concurrency
- new_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间
- new_delay = max(target_delay, new_delay)
- new_delay = min(max(self.mindelay, new_delay), self.maxdelay)
- slot.delay = new_delay
- """
- # 开始自动限速
- # AUTOTHROTTLE_ENABLED = True
- # The initial download delay
- # 初始下载延迟
- # AUTOTHROTTLE_START_DELAY = 5
- # The maximum download delay to be set in case of high latencies
- # 最大下载延迟
- # AUTOTHROTTLE_MAX_DELAY = 10
- # The average number of requests Scrapy should be sending in parallel to each remote server
- # 平均每秒并发数
- # AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
- # Enable showing throttling stats for every response received:
- # 是否显示
- # AUTOTHROTTLE_DEBUG = True
- # Enable and configure HTTP caching (disabled by default)
- # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
- """
- 18. 启用缓存
- 目的用于将已经发送的请求或相应缓存下来,以便以后使用
- from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware
- from scrapy.extensions.httpcache import DummyPolicy
- from scrapy.extensions.httpcache import FilesystemCacheStorage
- """
- # 是否启用缓存策略
- # HTTPCACHE_ENABLED = True
- # 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
- # HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
- # 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
- # HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy"
- # 缓存超时时间
- # HTTPCACHE_EXPIRATION_SECS = 0
- # 缓存保存路径
- # HTTPCACHE_DIR = 'httpcache'
- # 缓存忽略的Http状态码
- # HTTPCACHE_IGNORE_HTTP_CODES = []
- # 缓存存储的插件
- # HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
- """
- 19. 代理,需要在环境变量中设置
- from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware
- 方式一:使用默认,key不可以修改
- os.environ
- {
- http_proxy:http://root:woshiniba@192.168.11.11:9999/
- https_proxy:http://192.168.11.11:9999/
- }
- 方式二:使用自定义下载中间件
- def to_bytes(text, encoding=None, errors='strict'):
- if isinstance(text, bytes):
- return text
- if not isinstance(text, six.string_types):
- raise TypeError('to_bytes must receive a unicode, str or bytes '
- 'object, got %s' % type(text).__name__)
- if encoding is None:
- encoding = 'utf-8'
- return text.encode(encoding, errors)
- class ProxyMiddleware(object):
- def process_request(self, request, spider):
- PROXIES = [
- {'ip_port': '111.11.228.75:80', 'user_pass': ''},
- {'ip_port': '120.198.243.22:80', 'user_pass': ''},
- {'ip_port': '111.8.60.9:8123', 'user_pass': ''},
- {'ip_port': '101.71.27.120:80', 'user_pass': ''},
- {'ip_port': '122.96.59.104:80', 'user_pass': ''},
- {'ip_port': '122.224.249.122:8088', 'user_pass': ''},
- ]
- proxy = random.choice(PROXIES)
- if proxy['user_pass'] is not None:
- request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])
- encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass']))
- request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass)
- print "**************ProxyMiddleware have pass************" + proxy['ip_port']
- else:
- print "**************ProxyMiddleware no pass************" + proxy['ip_port']
- request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])
- DOWNLOADER_MIDDLEWARES = {
- 'step8_king.middlewares.ProxyMiddleware': 500,
- }
- """
- """
- 20. Https访问
- Https访问时有两种情况:
- 1. 要爬取网站使用的可信任证书(默认支持)
- DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
- DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory"
- 2. 要爬取网站使用的自定义证书
- DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
- DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy_test.https.MySSLFactory"
- # https.py
- from scrapy.core.downloader.contextfactory import ScrapyClientContextFactory
- from twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate)
- class MySSLFactory(ScrapyClientContextFactory):
- def getCertificateOptions(self):
- from OpenSSL import crypto
- v1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read())
- v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read())
- return CertificateOptions(
- privateKey=v1, # pKey对象
- certificate=v2, # X509对象
- verify=False,
- method=getattr(self, 'method', getattr(self, '_ssl_method', None))
- )
- 其他:
- 相关类
- scrapy.core.downloader.handlers.http.HttpDownloadHandler
- scrapy.core.downloader.webclient.ScrapyHTTPClientFactory
- scrapy.core.downloader.contextfactory.ScrapyClientContextFactory
- 相关配置
- DOWNLOADER_HTTPCLIENTFACTORY
- DOWNLOADER_CLIENTCONTEXTFACTORY
- """
- """
- 21. 爬虫中间件
- class SpiderMiddleware(object):
- def process_spider_input(self,response, spider):
- '''
- 下载完成,执行,然后交给parse处理
- :param response:
- :param spider:
- :return:
- '''
- pass
- def process_spider_output(self,response, result, spider):
- '''
- spider处理完成,返回时调用
- :param response:
- :param result:
- :param spider:
- :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
- '''
- return result
- def process_spider_exception(self,response, exception, spider):
- '''
- 异常调用
- :param response:
- :param exception:
- :param spider:
- :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
- '''
- return None
- def process_start_requests(self,start_requests, spider):
- '''
- 爬虫启动时调用
- :param start_requests:
- :param spider:
- :return: 包含 Request 对象的可迭代对象
- '''
- return start_requests
- 内置爬虫中间件:
- 'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,
- 'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,
- 'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,
- 'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,
- 'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900,
- """
- # from scrapy.contrib.spidermiddleware.referer import RefererMiddleware
- # Enable or disable spider middlewares
- # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
- SPIDER_MIDDLEWARES = {
- # 'scrapy_test.middlewares.SpiderMiddleware': 543,
- }
- """
- 22. 下载中间件
- class DownMiddleware1(object):
- def process_request(self, request, spider):
- '''
- 请求需要被下载时,经过所有下载器中间件的process_request调用
- :param request:
- :param spider:
- :return:
- None,继续后续中间件去下载;
- Response对象,停止process_request的执行,开始执行process_response
- Request对象,停止中间件的执行,将Request重新调度器
- raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
- '''
- pass
- def process_response(self, request, response, spider):
- '''
- spider处理完成,返回时调用
- :param response:
- :param result:
- :param spider:
- :return:
- Response 对象:转交给其他中间件process_response
- Request 对象:停止中间件,request会被重新调度下载
- raise IgnoreRequest 异常:调用Request.errback
- '''
- print('response1')
- return response
- def process_exception(self, request, exception, spider):
- '''
- 当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
- :param response:
- :param exception:
- :param spider:
- :return:
- None:继续交给后续中间件处理异常;
- Response对象:停止后续process_exception方法
- Request对象:停止中间件,request将会被重新调用下载
- '''
- return None
- 默认下载中间件
- {
- 'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,
- 'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,
- 'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,
- 'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,
- 'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,
- 'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,
- 'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,
- 'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,
- 'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,
- 'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,
- 'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,
- 'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,
- 'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,
- 'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,
- }
- """
- # from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware
- # Enable or disable downloader middlewares
- # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
- # DOWNLOADER_MIDDLEWARES = {
- # 'scrapy_test.middlewares.DownMiddleware1': 100,
- # 'scrapy_test.middlewares.DownMiddleware2': 500,
- # }
settings.py
11、模拟scrapy框架
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- from twisted.web.client import getPage, defer
- from twisted.internet import reactor
- import queue
- class Response(object):
- def __init__(self, body, request):
- self.body = body
- self.request = request
- self.url = request.url
- @property
- def text(self):
- return self.body.decode('utf-8')
- class Request(object):
- def __init__(self, url, callback=None):
- self.url = url
- self.callback = callback
- class Scheduler(object):
- def __init__(self, engine):
- self.q = queue.Queue()
- self.engine = engine
- def enqueue_request(self, request):
- self.q.put(request)
- def next_request(self):
- try:
- req = self.q.get(block=False)
- except Exception as e:
- req = None
- return req
- def size(self):
- return self.q.qsize()
- class ExecutionEngine(object):
- def __init__(self):
- self._closewait = None
- self.running = True
- self.start_requests = None
- self.scheduler = Scheduler(self)
- self.inprogress = set()
- def check_empty(self, response):
- if not self.running:
- self._closewait.callback('......')
- def _next_request(self):
- while self.start_requests:
- try:
- request = next(self.start_requests)
- except StopIteration:
- self.start_requests = None
- else:
- self.scheduler.enqueue_request(request)
- while len(self.inprogress) < 5 and self.scheduler.size() > 0: # 最大并发数为5
- request = self.scheduler.next_request()
- if not request:
- break
- self.inprogress.add(request)
- d = getPage(bytes(request.url, encoding='utf-8'))
- d.addBoth(self._handle_downloader_output, request)
- d.addBoth(lambda x, req: self.inprogress.remove(req), request)
- d.addBoth(lambda x: self._next_request())
- if len(self.inprogress) == 0 and self.scheduler.size() == 0:
- self._closewait.callback(None)
- def _handle_downloader_output(self, body, request):
- """
- 获取内容,执行回调函数,并且把回调函数中的返回值获取,并添加到队列中
- :param response:
- :param request:
- :return:
- """
- import types
- response = Response(body, request)
- func = request.callback or self.spider.parse
- gen = func(response)
- if isinstance(gen, types.GeneratorType):
- for req in gen:
- self.scheduler.enqueue_request(req)
- @defer.inlineCallbacks
- def start(self):
- self._closewait = defer.Deferred()
- yield self._closewait
- def open_spider(self, spider, start_requests):
- self.start_requests = start_requests
- self.spider = spider
- reactor.callLater(0, self._next_request)
- class Crawler(object):
- def __init__(self, spidercls):
- self.spidercls = spidercls
- self.spider = None
- self.engine = None
- @defer.inlineCallbacks
- def crawl(self):
- self.engine = ExecutionEngine()
- self.spider = self.spidercls()
- start_requests = iter(self.spider.start_requests())
- start_requests = iter(start_requests)
- self.engine.open_spider(self.spider, start_requests)
- yield self.engine.start()
- class CrawlerProcess(object):
- def __init__(self):
- self._active = set()
- self.crawlers = set()
- def crawl(self, spidercls, *args, **kwargs):
- crawler = Crawler(spidercls)
- self.crawlers.add(crawler)
- d = crawler.crawl(*args, **kwargs)
- self._active.add(d)
- return d
- def start(self):
- dl = defer.DeferredList(self._active)
- dl.addBoth(self._stop_reactor)
- reactor.run()
- def _stop_reactor(self, _=None):
- reactor.stop()
- class Spider(object):
- def start_requests(self):
- for url in self.start_urls:
- yield Request(url)
- class ChoutiSpider(Spider):
- name = "chouti"
- start_urls = [
- 'http://dig.chouti.com/',
- ]
- def parse(self, response):
- print(response.text)
- class CnblogsSpider(Spider):
- name = "cnblogs"
- start_urls = [
- 'http://www.cnblogs.com/',
- ]
- def parse(self, response):
- print(response.text)
- if __name__ == '__main__':
- spider_cls_list = [ChoutiSpider, CnblogsSpider]
- crawler_process = CrawlerProcess()
- for spider_cls in spider_cls_list:
- crawler_process.crawl(spider_cls)
- crawler_process.start()
模拟scrapy框架
参见文档:http://www.cnblogs.com/wupeiqi/articles/6229292.html
Python 爬虫七 Scrapy的更多相关文章
- 教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神
本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http://www.xiaohuar.com/,让你体验爬取校花的成就感. Scr ...
- 【转载】教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神
原文:教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神 本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http:/ ...
- Linux 安装python爬虫框架 scrapy
Linux 安装python爬虫框架 scrapy http://scrapy.org/ Scrapy是python最好用的一个爬虫框架.要求: python2.7.x. 1. Ubuntu14.04 ...
- Python爬虫框架Scrapy实例(三)数据存储到MongoDB
Python爬虫框架Scrapy实例(三)数据存储到MongoDB任务目标:爬取豆瓣电影top250,将数据存储到MongoDB中. items.py文件复制代码# -*- coding: utf-8 ...
- 《Python3网络爬虫开发实战》PDF+源代码+《精通Python爬虫框架Scrapy》中英文PDF源代码
下载:https://pan.baidu.com/s/1oejHek3Vmu0ZYvp4w9ZLsw <Python 3网络爬虫开发实战>中文PDF+源代码 下载:https://pan. ...
- Python爬虫框架Scrapy教程(1)—入门
最近实验室的项目中有一个需求是这样的,需要爬取若干个(数目不小)网站发布的文章元数据(标题.时间.正文等).问题是这些网站都很老旧和小众,当然也不可能遵守 Microdata 这类标准.这时候所有网页 ...
- 0.Python 爬虫之Scrapy入门实践指南(Scrapy基础知识)
目录 0.0.Scrapy基础 0.1.Scrapy 框架图 0.2.Scrapy主要包括了以下组件: 0.3.Scrapy简单示例如下: 0.4.Scrapy运行流程如下: 0.5.还有什么? 0. ...
- 《精通Python爬虫框架Scrapy》学习资料
<精通Python爬虫框架Scrapy>学习资料 百度网盘:https://pan.baidu.com/s/1ACOYulLLpp9J7Q7src2rVA
- 初识python爬虫框架Scrapy
Scrapy,按照其官网(https://scrapy.org/)上的解释:一个开源和协作式的框架,用快速.简单.可扩展的方式从网站提取所需的数据. 我们一开始上手爬虫的时候,接触的是urllib.r ...
随机推荐
- MySQL数据库简单查询
--黑马程序员 DQL数据查询语言 数据库执行DQL语句不会对数据进行改变,而是让数据库发送结果集给客户端.查询返回的结果集是一张虚拟表. 查询关键字:SELECT 语法: SELECT 列名 FRO ...
- XTest
腾讯优测是一个移动云测试平台,为应用.游戏.H5混合应用的研发团队提供产品质量检测与问题解决服务. 这是腾讯内部针对微信内的H5,做了一套专门的UI自动化框架.而且都是用真机来跑这些框架,在真机上模拟 ...
- C# winform TreeView中关于checkbox选择的完美类[转]
http://www.cnblogs.com/kingangWang/archive/2011/08/15/2139119.html public static class TreeViewCheck ...
- bat 复制文件夹,文件名递增 等操作
句尾无';' @echo off : 回显,使命令不在dos中一行一行输出 pause : 暂停,以便看到输出结果 变量 %% 与 % % : https://zhidao.baidu.com/que ...
- 斯坦福大学公开课机器学习:advice for applying machine learning - deciding what to try next(设计机器学习系统时,怎样确定最适合、最正确的方法)
假如我们在开发一个机器学习系统,想试着改进一个机器学习系统的性能,我们应该如何决定接下来应该选择哪条道路? 为了解释这一问题,以预测房价的学习例子.假如我们已经得到学习参数以后,要将我们的假设函数放到 ...
- Java实现二叉树的前序、中序、后序、层序遍历(递归方法)
在数据结构中,二叉树是树中我们见得最多的,二叉查找树可以加速我们查找的效率,那么输出一个二叉树也变得尤为重要了. 二叉树的遍历方法分为四种,分别为前序遍历.中序遍历.后序.层序遍历.下图即为一 ...
- Nginx上部署HTTPS + HTTP2
Nginx上部署HTTPS依赖OpenSSL库和包含文件,即须先安装好libssl-dev(或者OpenSSL),且ln -s /usr/lib/x86_64-linux-gnu/libssl.so ...
- struts2 对EL的改变
Struts2对EL的改变 1.Struts2中使用EL的问题: 前提: 我们应该知道,如果我们没有往值栈(根)中放入数据的话,那么我们的动作类默认是在值栈的栈顶 2.关于EL问题的分析: 分析: ...
- league之csv导出
有的时候当我们导出文件时,如果文件比较小可以使用phpexcel,但是当文件太大时就会遇到很多瓶颈(excel条数限制.导出时间太长等). 这个时候要么使用excel分批次导出,要么就需要使用csv导 ...
- CodeForces1051F LCA + Floyd
题意:给定一个10W的无向联通图,和10W的询问,每个询问求任意两点间的距离,限制条件是边数-点数不超过20 一般来说图上任意两点间的距离都会采用Floyd算法直接做,但是这个数据范围显然是不合理的, ...