蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉)

\(CRT\)要解决的是这样一个问题:

$$x≡a_1​(mod m_1​)$$

$$x≡a_2​(mod m_2​)$$

$$x≡a_3​(mod m_3​)$$

$$...$$

$$x≡a_k​(mod m_k​)​$$

其中,\(m\)之间两两互质。这个问题有一个通解是\(\sum a_i * M * t_i / m_i\),其中\(t_i\)代表方程\(M * t_i / m_i ≡ 1\)的最小正整数解。

为什么它是对的呢?对于任意一个式子\(x≡a_j(mod m_j)\),通解中\(i = j\)的部分会贡献\(a_i\)的余数,而其它部分会贡献\(0\)的余数。

更一般的,我们来考虑如果\(m\)之间不互质的情况,由于打公式很累,所以详细请参考这个博客

发一下\(exCRT\)的板子。

#include <bits/stdc++.h>
using namespace std; #define int long long const int N = 100010; int n, bi[N], ai[N]; int add (int a, int b, int mod) {
return ((a + b) % mod + mod ) % mod;
} int mul (int a, int b, int mod) {
int res = 0;
while (b > 0) {
if (b & 1) {
res = (res + a) % mod;
}
a = (a + a) % mod;
b >>= 1;
}
return res;
} int exgcd (int a, int b, int &x, int &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int gcd = exgcd (b, a % b, x, y);
int xx = y, yy = x - (a / b) * y;
x = xx, y = yy;
return gcd;
} int excrt () {
int x, y;
int M = ai[1], ans = bi[1]; //通解是b[1] + a[1] * t ≡b[2] (mod a[2]);
for(int i = 2; i <= n; ++i) {
//M * x + a[i] * y = b[i] - ans;
//其中 ans + M * x % lcm (M, b[i]) 就是新的通解
//求出来的x是对于gcd (M, a[i])而言,所以要乘上c / gcd (M, a[i]);
int a = M, b = ai[i], c = add (bi[i], -ans, b);
int gcd = exgcd (a, b, x, y), bg = b / gcd;
x = mul (x, c / gcd, ai[i]);
ans += x * M;//更新前k个方程组的答案
M *= bg;//M为前k个m的lcm
ans = (ans %M + M) % M;
}
return ans;
} signed main () {
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> ai[i] >> bi[i]; //b是余数,a是模数。
}
cout << excrt () << endl;
return 0;
}

CRT和EXCRT学习笔记的更多相关文章

  1. 扩展中国剩余定理 exCRT 学习笔记

    前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...

  2. CRT&EXCRT学习笔记

    非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+ ...

  3. CRT & EXCRT 学习笔记

    这玩意解决的是把同余方程组合并的问题. CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $ \[R_im_i = 1, R_im_j ...

  4. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  5. Linux学习笔记(7)CRT实现windows与linux的文件上传下载

    Linux学习笔记(7)CRT实现windows与linux的文件上传下载 按下Alt + p 进入SFTP模式,或者右击选项卡进入 命令介绍 help 显示该FTP提供所有的命令 lcd 改变本地上 ...

  6. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

  7. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  8. shell学习笔记

    shell学习笔记 .查看/etc/shells,看看有几个可用的Shell . 曾经用过的命令存在.bash_history中,但是~/.bash_history记录的是前一次登录前记录的所有指令, ...

  9. https学习笔记三----OpenSSL生成root CA及签发证书

    在https学习笔记二,已经弄清了数字证书的概念,组成和在https连接过程中,客户端是如何验证服务器端的证书的.这一章,主要介绍下如何使用openssl库来创建key file,以及生成root C ...

随机推荐

  1. Lodop打印设计(PRINT_DESIGN)介绍

    打印设计(PRINT_DESIGN)界面上方有两栏菜单栏,举例说明(文本框,条码,图形等).(1)第一排最左侧第一个功能,位置移动:控制里面元素微上下左右移动,每次移动一个px.(用于微调,普通调整可 ...

  2. Java拦截器

    拦截器,主要用于拦截前端请求,常用于登录检查. 下面是演示使用拦截器拦截未登录的用户访问需要登录的模块情景,使用配置方式实现和注解方式实现代码: 配置方式: 1.web.xml中配置监听器,对于所有的 ...

  3. Nginx 负载均衡一致性算法

    一般Hash负载算法都是%算法 比如key-5 如果有5台服务器 那么5%5=0  那么请求将落在server 0 上,当有服务器宕机或者添加新服务器时,hash算法会引发大量路由更改,可能导致缓存大 ...

  4. Facebook开源最先进的语音系统wav2letter++

    最近,Facebook AI Research(FAIR)宣布了第一个全收敛语音识别工具包wav2letter++.该系统基于完全卷积方法进行语音识别,训练语音识别端到端神经网络的速度是其他框架的两倍 ...

  5. C++:如何正确的定义一个接口类

    C++中如何定义接口类?首先给接口类下了定义:接口类应该是只提供方法声明,而自身不提供方法定义的抽象类.接口类自身不能实例化,接口类的方法定义/实现只能由接口类的子类来完成. 而对于C++,其接口类一 ...

  6. BZOJ4482[Jsoi2015]套娃——贪心+set

    题目描述 [故事背景] 刚从俄罗斯旅游回来的JYY买了很多很多好看的套娃作为纪念品!比如右 图就是一套他最喜欢的套娃J.JYY由于太过激动,把所有的套娃全 部都打开了.而由于很多套娃长得过于相像,JY ...

  7. Codeforces Round #475 Div. 1

    B:当n是偶数时无解,因为此时树中有奇数条边,而我们每次都只能删除偶数条.当n是奇数时一定有解,因为此时不可能所有点度数都为奇数,只要找到一个度数为偶数的点,满足将它删掉后,各连通块大小都为奇数就可以 ...

  8. IDM下载神器

    破解版IDM 个人评价:基本上能满足日常下载需求,除bt.磁力外. 不管是在线视频, 还是音乐, 电子书, 统统都能下载, 还附有爬虫功能~~ 直接附链接: 百度云链接: https://pan.ba ...

  9. [USACO12MAR] 花盆Flowerpot

    类型:二分+单调队列 传送门:>Here< 题意:给出$N$个点的坐标,要求根据$x$轴选定一段区间$[L,R]$,使得其中的点的最大与最小的$y$值之差$\geq D$.求$Min\{R ...

  10. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...