LevelDB源码分析-Bloom Filter
Bloom Filter
bloom filter是leveldb中用来在一个block中检测key是否存在的工具,主要在BloomFilterPolicy类中实现:
class BloomFilterPolicy : public FilterPolicy
{
private:
size_t bits_per_key_;
size_t k_;
public:
explicit BloomFilterPolicy(int bits_per_key)
: bits_per_key_(bits_per_key)
{
// ...
}
// ...
virtual void CreateFilter(const Slice *keys, int n, std::string *dst) const
{
// ...
}
virtual bool KeyMayMatch(const Slice &key, const Slice &bloom_filter) const
{
// ...
}
};
其中,bits_per_key_表示m/n,即bloom filter中包含的位数组长度与sstable中key的数量的比值。k_为hash函数的个数。
接下来看BloomFilterPolicy的构造函数,因为bloom filter的FPR(false positive rate)为(1-e^(-kn/m))^k,当k为log(2)(m/n)时,FPR最小,因此这里用bits_per_key_乘以0.69来求得k_的值,当然最后还是要将k限定在1-30的范围内:
// We intentionally round down to reduce probing cost a little bit
k_ = static_cast<size_t>(bits_per_key * 0.69); // 0.69 =~ ln(2)
if (k_ < 1)
k_ = 1;
if (k_ > 30)
k_ = 30;
通过调用CreateFilter函数创建一个新的bloom filter。这个函数首先计算出需要多少字节来存储这个新的bloom filter:
// Compute bloom filter size (in both bits and bytes)
size_t bits = n * bits_per_key_;
// For small n, we can see a very high false positive rate. Fix it
// by enforcing a minimum bloom filter length.
if (bits < 64)
bits = 64;
size_t bytes = (bits + 7) / 8;
bits = bytes * 8;
接下来函数将存储bloom filter的字符串dst进行扩展,使其能够存储刚刚计算出的新增的bytes个字节,dst中原来存储的是之前得到的bloom filter,同时将当前正在构建的这个bloom filter使用的hash函数的个数存入dst的末尾:
const size_t init_size = dst->size();
dst->resize(init_size + bytes, 0);
dst->push_back(static_cast<char>(k_)); // Remember # of probes in filter
最后依次取出key,通过double hash来计算出key的k_个hash后的结果,并将值存入dst指向的字符串中:
char *array = &(*dst)[init_size];
for (int i = 0; i < n; i++)
{
// Use double-hashing to generate a sequence of hash values.
// See analysis in [Kirsch,Mitzenmacher 2006].
uint32_t h = BloomHash(keys[i]);
const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
for (size_t j = 0; j < k_; j++)
{
const uint32_t bitpos = h % bits;
array[bitpos / 8] |= (1 << (bitpos % 8));
h += delta;
}
}
这里double hash的算法为:
Hi = h1(x) + ih2(x)
h2(x) = (h1(x) >> 17) | (h1(x) << 15)
通过调用KeyMayMatch函数可以判断一个key是不是在bloom filter表示的key集合中。这个函数首先得到给定bloom filter的一些相关信息,比如bit数、hash函数的个数(生成一个bloom filter时,hash函数的个数被编码在bloom filter的最后一个字节)等,如果hash函数的个数大于30,则直接返回true:
const size_t len = bloom_filter.size();
if (len < 2)
return false;
const char *array = bloom_filter.data();
const size_t bits = (len - 1) * 8;
// Use the encoded k so that we can read filters generated by
// bloom filters created using different parameters.
const size_t k = array[len - 1];
if (k > 30)
{
// Reserved for potentially new encodings for short bloom filters.
// Consider it a match.
return true;
}
然后通过依次计算key的k个hash函数的值,判断这个key是否在bloom filter表示的key集合中:
uint32_t h = BloomHash(key);
const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
for (size_t j = 0; j < k; j++)
{
const uint32_t bitpos = h % bits;
if ((array[bitpos / 8] & (1 << (bitpos % 8))) == 0)
return false;
h += delta;
}
return true;
LevelDB还封装了FilterBlockBuilder类来构建在sstable中存储bloom filter的block:
// A FilterBlockBuilder is used to construct all of the filters for a
// particular Table. It generates a single string which is stored as
// a special block in the Table.
//
// The sequence of calls to FilterBlockBuilder must match the regexp:
// (StartBlock AddKey*)* Finish
class FilterBlockBuilder
{
public:
explicit FilterBlockBuilder(const FilterPolicy *);
void StartBlock(uint64_t block_offset);
void AddKey(const Slice &key);
Slice Finish();
private:
void GenerateFilter();
const FilterPolicy *policy_;
std::string keys_; // Flattened key contents
std::vector<size_t> start_; // Starting index in keys_ of each key
std::string result_; // Filter data computed so far
std::vector<Slice> tmp_keys_; // policy_->CreateFilter() argument
std::vector<uint32_t> filter_offsets_;
// ...
};
keys_用来存储需要添加进bloom filter的key,每个key都简单的连接在keys_的后面,start_存储每个key在keys_中的偏移量,result_为当前已经计算得到的bloom filter的值,tmp_keys_用于在调用CreateFilter函数时传递参数,filter_offsets_用于存储构建的每一个bloom filter在当前filter block中的偏移量。
StartBlock函数在开始构建bloom filter前调用。因为bloom filter的构建策略是每2k个字节就构建一个bloom filter,所以StartBlock函数会首先判断当前sstable中尚未构建bloom filter的数据是否已经达到了2k,如果达到,就调用GenerateFilter()函数为sstable中尚未构建bloom filter的数据构建新的bloom filter。
void FilterBlockBuilder::StartBlock(uint64_t block_offset)
{
uint64_t filter_index = (block_offset / kFilterBase);
assert(filter_index >= filter_offsets_.size());
while (filter_index > filter_offsets_.size())
{
GenerateFilter();
}
}
其中GenerateFilter函数为:
void FilterBlockBuilder::GenerateFilter()
函数首先计算出需要添加进bloom filter中的key的数量,并将key存入tmp_keys_以便传参:
const size_t num_keys = start_.size();
if (num_keys == 0)
{
// Fast path if there are no keys for this filter
filter_offsets_.push_back(result_.size());
return;
}
// Make list of keys from flattened key structure
start_.push_back(keys_.size()); // Simplify length computation
tmp_keys_.resize(num_keys);
for (size_t i = 0; i < num_keys; i++)
{
const char *base = keys_.data() + start_[i];
size_t length = start_[i + 1] - start_[i];
tmp_keys_[i] = Slice(base, length);
}
接下来将新的bloom filter在filter block中的偏移量存入filter_offsets_,然后调用BloomFilterPolicy类的CreateFilter函数构建新的bloom filter:
// Generate filter for current set of keys and append to result_.
filter_offsets_.push_back(result_.size());
policy_->CreateFilter(&tmp_keys_[0], static_cast<int>(num_keys), &result_);
AddKey函数比较简单,只是将key加在keys_的后面,然后在start_中添加这个key的偏移量:
void FilterBlockBuilder::AddKey(const Slice &key)
{
Slice k = key;
start_.push_back(keys_.size());
keys_.append(k.data(), k.size());
}
Finish函数完成一个filter block的构建
Slice FilterBlockBuilder::Finish()
首先,当FilterBlockBuilder中还有key尚未构建bloom filter时,调用GenerateFilter函数将其构建为一个bloom filter:
if (!start_.empty())
{
GenerateFilter();
}
然后将每个bloom filter在result_中的偏移量编码后加入result_:
// Append array of per-filter offsets
const uint32_t array_offset = result_.size();
for (size_t i = 0; i < filter_offsets_.size(); i++)
{
PutFixed32(&result_, filter_offsets_[i]);
}
最后将描述bloom filter在result_中的偏移量的数组在result_中的偏移量编码后存入result_,这里还要存储kFilterBaseLg(sstable中每1 << kFilterBaseLg个字节构建一个bloom filter):
PutFixed32(&result_, array_offset);
result_.push_back(kFilterBaseLg); // Save encoding parameter in result
return Slice(result_);
LevelDB同时还封装了一个FilterBlockReader类用于filter block的读取:
class FilterBlockReader
{
public:
// REQUIRES: "contents" and *policy must stay live while *this is live.
FilterBlockReader(const FilterPolicy *policy, const Slice &contents);
bool KeyMayMatch(uint64_t block_offset, const Slice &key);
private:
const FilterPolicy *policy_;
const char *data_; // Pointer to filter data (at block-start)
const char *offset_; // Pointer to beginning of offset array (at block-end)
size_t num_; // Number of entries in offset array
size_t base_lg_; // Encoding parameter (see kFilterBaseLg in .cc file)
};
其中data_指向bloom filter的起始位置,offset_指向描述bloom filter在filter block中的偏移量的数组的起始位置,num_表示offset_数组的元素个数,base_lg_即为之前提到的kFilterBaseLg。
这里调用KeyMayMatch函数来实现对给定key是否在给定block中的检查:
bool FilterBlockReader::KeyMayMatch(uint64_t block_offset, const Slice &key)
{
}
函数首先根据给定block的block_offset找到该block对应的是filter block中的第几个bloom filter:
uint64_t index = block_offset >> base_lg_;
然后得到对应的bloom filter的起始位置和结束位置,并调用BloomFilterPolicy类的KeyMayMatch函数进行检查:
if (index < num_)
{
uint32_t start = DecodeFixed32(offset_ + index * 4);
uint32_t limit = DecodeFixed32(offset_ + index * 4 + 4);
if (start <= limit && limit <= static_cast<size_t>(offset_ - data_))
{
Slice filter = Slice(data_ + start, limit - start);
return policy_->KeyMayMatch(key, filter);
}
else if (start == limit)
{
// Empty filters do not match any keys
return false;
}
}
return true; // Errors are treated as potential matches
238 Love u
LevelDB源码分析-Bloom Filter的更多相关文章
- leveldb源码分析--SSTable之block
在SSTable中主要存储数据的地方是data block,block_builder就是这个专门进行block的组织的地方,我们来详细看看其中的内容,其主要有Add,Finish和CurrentSi ...
- leveldb源码分析--WriteBatch
从[leveldb源码分析--插入删除流程]和WriteBatch其名我们就很轻易的知道,这个是leveldb内部的一个批量写的结构,在leveldb为了提高插入和删除的效率,在其插入过程中都采用了批 ...
- leveldb源码分析--Key结构
[注]本文参考了sparkliang的专栏的Leveldb源码分析--3并进行了一定的重组和排版 经过上一篇文章的分析我们队leveldb的插入流程有了一定的认识,而该文设计最多的又是Batch的概念 ...
- Leveldb源码分析--1
coming from http://blog.csdn.net/sparkliang/article/details/8567602 [前言:看了一点oceanbase,没有意志力继续坚持下去了,暂 ...
- leveldb源码分析--日志
我们知道在一个数据库系统中为了保证数据的可靠性,我们都会记录对系统的操作日志.日志的功能就是用来在系统down掉的时候对数据进行恢复,所以日志系统对一个要求可靠性的存储系统是极其重要的.接下来我们分析 ...
- leveldb源码分析之Slice
转自:http://luodw.cc/2015/10/15/leveldb-02/ leveldb和redis这样的优秀开源框架都没有使用C++自带的字符串string,redis自己写了个sds,l ...
- LevelDB源码分析-TableBuilder生成sstable
TableBuilder生成sstable(include/table_builder.h table/table_builder.cc) LevelDB使用TableBuilder来构建sstabl ...
- LevelDB源码分析--Cache及Get查找流程
本打算接下来分析version相关的概念,但是在准备的过程中看到了VersionSet的table_cache_这个变量才想起还有这样一个模块尚未分析,经过权衡觉得leveldb的version相对C ...
- leveldb源码分析--SSTable之TableBuilder
上一篇文章讲述了SSTable的格式以后,本文结合源码解析SSTable是如何生成的. void TableBuilder::Add(const Slice& key, const Slice ...
随机推荐
- asp.net core webapi处理Post请求中的request payload
request payload的Content-Type实际上是text/plain的,如果请求的 Content-Type 为 application/json,这将导致415 Unsupporte ...
- Https网络安全架构设计
一.对称加密 对称密钥加密(Symmetric-key algorithm)又称对称加密.私钥加密.共享密钥加密,是密码学中的一类加密算法.这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单地 ...
- 北京U3D外包团队 UE4红军抗战案例 Unity3D红军抗战案例 UE4下载和安装虚幻4游戏引擎
刚完整UE4红军抗战案例 Unity3D红军抗战案例,有在线演示(版权关系不方便发图),有UE4或Unity项目定制外包开发的欢迎联系我们 进入虚幻4的官方主页(https://www.unreale ...
- Android嵌套滑动不流畅记录随笔
---恢复内容开始--- 今天第一次用到ScrollView嵌套RecyclerView来做页面. 刚开始效果开心得很,非常Very漂亮噢! 纳尼!!!沃特Fuck!出事儿,出事儿! 滑动为何如此不流 ...
- Azure CosmosDB (7) 分区键Partition Key
<Windows Azure Platform 系列文章目录> Azure Cosmos DB使用分区键(Partition Key),来对数据进行水平缩放(Horizon Scale), ...
- 【Algorithm】字符串编辑距离(Levenshtein距离)C++算法实现
算法实现比较简单,但算法原理不明白,有空了再研究一下. unsigned LevenshteinDistance(const string& s1, const string& s2) ...
- mac下常用命令
常用命令 ls 查看当前目录下的文件 cd 进入某目录 . cd - 跳转回前一目录 . cd ~ 进入当前用户个人目录 pwd 输出当前所在路径 mkdir 新建文件夹. touch 新建文件 fi ...
- subprocess模块 sys模块
常用模块学习—subprocess模块详解 要通过Python去执行一条系统命令或脚本,系统的shell命令是独立于你的python进程之外的,每执行一条命令,就是发起一个新进程,通过python调用 ...
- OpenResty的现状、趋势、使用及学习方法
Nginx 是俄罗斯人发明的, Lua 是巴西几个教授发明的,中国人章亦春把 LuaJIT VM 嵌入到 Nginx 中,实现了 OpenResty 这个高性能服务端解决方案. 通过 OpenRest ...
- select、poll、epoll之间的区别总结[转载]
转载:https://www.cnblogs.com/Anker/p/3265058.html select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述 ...