1、synchronized原理

在java中,每一个对象有且仅有一个同步锁。这也意味着,同步锁是依赖于对象而存在。
当我们调用某对象的synchronized方法时,就获取了该对象的同步锁。例如,synchronized(obj)就获取了“obj这个对象”的同步锁。
不同线程对同步锁的访问是互斥的。也就是说,某时间点,对象的同步锁只能被一个线程获取到!通过同步锁,我们就能在多线程中,实现对“对象/方法”的互斥访问。 例如,现在有两个线程A和线程B,它们都会访问“对象obj的同步锁”。假设,在某一时刻,线程A获取到“obj的同步锁”并在执行一些操作;而此时,线程B也企图获取“obj的同步锁” —— 线程B会获取失败,它必须等待,直到线程A释放了“该对象的同步锁”之后线程B才能获取到“obj的同步锁”从而才可以运行。

2、synchronized基本原则

我们将synchronized的基本规则总结为下面3条,并通过实例对它们进行说明。
第一条: 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的该“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
第二条: 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程仍然可以访问“该对象”的非同步代码块。
第三条: 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的其他的“synchronized方法”或者“synchronized代码块”的访问将被阻塞。

(1)当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的该“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
下面是“synchronized代码块”对应的演示程序。

  1. package com.demo.synchronize;
  2.  
  3. public class MyRunable implements Runnable{
  4.  
  5. @Override
  6. public void run(){
  7.  
  8. synchronized(this){
  9. try{
  10. for (int i = 0; i < 5; i++) {
  11. Thread.sleep(100); // 休眠100ms
  12. System.out.println(Thread.currentThread().getName() + " loop " + i);
  13. }
  14. }catch(InterruptedException e){
  15.  
  16. }
  17. }
  18. }
  19. }
  1. package com.demo.synchronize;
  2.  
  3. public class Demo1_1 {
  4.  
  5. public static void main(String[] args) {
  6.  
  7. Runnable demo = new MyRunable(); // 新建“Runnable对象”
  8.  
  9. Thread t1 = new Thread(demo, "t1"); // 新建“线程t1”, t1是基于demo这个Runnable对象
  10. Thread t2 = new Thread(demo, "t2"); // 新建“线程t2”, t2是基于demo这个Runnable对象
  11. t1.start(); // 启动“线程t1”
  12. t2.start(); // 启动“线程t2”
  13. }
  14. }

运行结果:

  1. t1 loop 0
  2. t1 loop 1
  3. t1 loop 2
  4. t1 loop 3
  5. t1 loop 4
  6. t2 loop 0
  7. t2 loop 1
  8. t2 loop 2
  9. t2 loop 3
  10. t2 loop 4

结果说明:

run()方法中存在“synchronized(this)代码块”,而且t1和t2都是基于"demo这个Runnable对象"创建的线程。这就意味着,我们可以将synchronized(this)中的this看作是“demo这个Runnable对象”;因此,线程t1和t2共享“demo对象的同步锁”。所以,当一个线程运行的时候,另外一个线程必须等待“运行线程”释放“demo的同步锁”之后才能运行。

如果你确认,你搞清楚这个问题了。那我们将上面的代码进行修改,然后再运行看看结果怎么样,看看你是否会迷糊。修改后的源码如下:

  1. package com.demo.synchronize;
  2.  
  3. public class MyThread extends Thread{
  4.  
  5. public MyThread(String name) {
  6. super(name);
  7. }
  8.  
  9. @Override
  10. public void run() {
  11. synchronized(this) {
  12. try {
  13. for (int i = 0; i < 5; i++) {
  14. Thread.sleep(100); // 休眠100ms
  15. System.out.println(Thread.currentThread().getName() + " loop " + i);
  16. }
  17. } catch (InterruptedException ie) {
  18. }
  19. }
  20. }
  21. }
  1. package com.demo.synchronize;
  2.  
  3. public class Demo1_2 {
  4.  
  5. public static void main(String[] args){
  6. Thread t1 = new MyThread("t1"); // 新建“线程t1”
  7. Thread t2 = new MyThread("t2"); // 新建“线程t2”
  8. t1.start(); // 启动“线程t1”
  9. t2.start(); // 启动“线程t2”
  10. }
  11. }

代码说明:

比较Demo1_2 和 Demo1_1,我们发现,Demo1_2中的MyThread类是直接继承于Thread,而且t1和t2都是MyThread子线程。
幸运的是,在“Demo1_2的run()方法”也调用了synchronized(this),正如“Demo1_1的run()方法”也调用了synchronized(this)一样!
那么,Demo1_2的执行流程是不是和Demo1_1一样呢?

运行结果:

  1. t2 loop 0
  2. t1 loop 0
  3. t2 loop 1
  4. t1 loop 1
  5. t1 loop 2
  6. t2 loop 2
  7. t2 loop 3
  8. t1 loop 3
  9. t2 loop 4
  10. t1 loop 4

结果说明:

如果这个结果一点也不令你感到惊讶,那么我相信你对synchronized和this的认识已经比较深刻了。否则的话,请继续阅读这里的分析。
synchronized(this)中的this是指“当前的类对象”,即synchronized(this)所在的类对应的当前对象。它的作用是获取“当前对象的同步锁”。
对于Demo1_2中,synchronized(this)中的this代表的是MyThread对象,而t1和t2是两个不同的MyThread对象,因此t1和t2在执行synchronized(this)时,获取的是不同对象的同步锁。对于Demo1_1对而言,synchronized(this)中的this代表的是MyRunable对象;t1和t2指的是同一个MyRunable对象,因此,一个线程获取了对象的同步锁,会造成另外一个线程等待。

(2)当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程仍然可以访问“该对象”的非同步代码块。

下面是“synchronized代码块”对应的演示程序。

  1. package com.demo.synchronize;
  2.  
  3. public class Count {
  4.  
  5. // 含有synchronized同步块的方法
  6. public void synMethod(){
  7. synchronized(this){
  8. try {
  9. for (int i = 0; i < 5; i++) {
  10. Thread.sleep(100); // 休眠100ms
  11. System.out.println(Thread.currentThread().getName() + " synMethod loop " + i);
  12. }
  13. } catch (InterruptedException ie) {
  14. }
  15. }
  16. }
  17.  
  18. // 非同步的方法
  19. public void nonSynMethod(){
  20. try {
  21. for (int i = 0; i < 5; i++) {
  22. Thread.sleep(100);
  23. System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i);
  24. }
  25. } catch (InterruptedException ie) {
  26. }
  27. }
  28. }
  1. package com.demo.synchronize;
  2.  
  3. public class Demo2 {
  4.  
  5. public static void main(String[] args){
  6.  
  7. final Count count = new Count();
  8. // 新建t1, t1会调用“count对象”的synMethod()方法
  9. Thread t1 = new Thread(
  10. new Runnable(){
  11. @Override
  12. public void run(){
  13. count.synMethod();
  14. }
  15. },"t1");
  16. // 新建t2, t2会调用“count对象”的nonSynMethod()方法
  17. Thread t2 = new Thread(
  18. new Runnable(){
  19. @Override
  20. public void run(){
  21. count.nonSynMethod();
  22. }
  23. },"t2");
  24.  
  25. t1.start(); // 启动t1
  26. t2.start(); // 启动t2
  27. }
  28. }

运行结果:

  1. t1 synMethod loop 0
  2. t2 nonSynMethod loop 0
  3. t2 nonSynMethod loop 1
  4. t1 synMethod loop 1
  5. t2 nonSynMethod loop 2
  6. t1 synMethod loop 2
  7. t2 nonSynMethod loop 3
  8. t1 synMethod loop 3
  9. t1 synMethod loop 4
  10. t2 nonSynMethod loop 4

结果说明:

主线程中新建了两个子线程t1和t2。t1会调用count对象的synMethod()方法,该方法内含有同步块;而t2则会调用count对象的nonSynMethod()方法,该方法不是同步方法。t1运行时,虽然调用synchronized(this)获取“count的同步锁”;但是并没有造成t2的阻塞,因为t2没有用到“count”同步锁。

(3)当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的其他的“synchronized方法”或者“synchronized代码块”的访问将被阻塞。

我们将上面的例子中的nonSynMethod()方法体的也用synchronized(this)修饰。修改后的源码如下:

  1. package com.demo.synchronize;
  2.  
  3. public class Count {
  4.  
  5. // 含有synchronized同步块的方法
  6. public void synMethod(){
  7. synchronized(this){
  8. try {
  9. for (int i = 0; i < 5; i++) {
  10. Thread.sleep(100); // 休眠100ms
  11. System.out.println(Thread.currentThread().getName() + " synMethod loop " + i);
  12. }
  13. } catch (InterruptedException ie) {
  14. }
  15. }
  16. }
  17.  
  18. // 也包含synchronized同步块的方法
  19. public void nonSynMethod(){
  20. synchronized(this){
  21. try {
  22. for (int i = 0; i < 5; i++) {
  23. Thread.sleep(100);
  24. System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i);
  25. }
  26. } catch (InterruptedException ie) {
  27. }
  28. }
  29. }
  30. }
  1. package com.demo.synchronize;
  2.  
  3. public class Demo3 {
  4.  
  5. public static void main(String[] args){
  6.  
  7. final Count count = new Count();
  8. // 新建t1, t1会调用“count对象”的synMethod()方法
  9. Thread t1 = new Thread(
  10. new Runnable(){
  11. @Override
  12. public void run(){
  13. count.synMethod();
  14. }
  15. },"t1");
  16. // 新建t2, t2会调用“count对象”的nonSynMethod()方法
  17. Thread t2 = new Thread(
  18. new Runnable(){
  19. @Override
  20. public void run(){
  21. count.nonSynMethod();
  22. }
  23. },"t2");
  24.  
  25. t1.start(); // 启动t1
  26. t2.start(); // 启动t2
  27. }
  28. }

运行结果:

  1. t1 synMethod loop 0
  2. t1 synMethod loop 1
  3. t1 synMethod loop 2
  4. t1 synMethod loop 3
  5. t1 synMethod loop 4
  6. t2 nonSynMethod loop 0
  7. t2 nonSynMethod loop 1
  8. t2 nonSynMethod loop 2
  9. t2 nonSynMethod loop 3
  10. t2 nonSynMethod loop 4

结果说明
主线程中新建了两个子线程t1和t2。t1和t2运行时都调用synchronized(this),这个this是Count对象(count),而t1和t2共用count。因此,在t1运行时,t2会被阻塞,等待t1运行释放“count对象的同步锁”,t2才能运行。

3、synchronized方法和synchronized代码块

“synchronized方法”是用synchronized修饰方法,而 “synchronized代码块”则是用synchronized修饰代码块。

synchronized方法示例

  1. public synchronized void foo1() {
  2. System.out.println("synchronized methoed");
  3. }

synchronized代码块

  1. public void foo2() {
  2. synchronized (this) {
  3. System.out.println("synchronized methoed");
  4. }
  5. }

synchronized代码块中的this是指当前对象。也可以将this替换成其他对象,例如将this替换成obj,则foo2()在执行synchronized(obj)时就获取的是obj的同步锁。

synchronized代码块可以更精确的控制冲突限制访问区域,有时候表现更高效率。下面通过一个示例来演示:

  1. // Demo4.java的源码
  2. public class Demo4 {
  3.  
  4. public synchronized void synMethod() {
  5. for(int i=0; i<1000000; i++)
  6. ;
  7. }
  8.  
  9. public void synBlock() {
  10. synchronized( this ) {
  11. for(int i=0; i<1000000; i++)
  12. ;
  13. }
  14. }
  15.  
  16. public static void main(String[] args) {
  17. Demo4 demo = new Demo4();
  18.  
  19. long start, diff;
  20. start = System.currentTimeMillis(); // 获取当前时间(millis)
  21. demo.synMethod(); // 调用“synchronized方法”
  22. diff = System.currentTimeMillis() - start; // 获取“时间差值”
  23. System.out.println("synMethod() : "+ diff);
  24.  
  25. start = System.currentTimeMillis(); // 获取当前时间(millis)
  26. demo.synBlock(); // 调用“synchronized方法块”
  27. diff = System.currentTimeMillis() - start; // 获取“时间差值”
  28. System.out.println("synBlock() : "+ diff);
  29. }
  30. }

(某一次)执行结果:

  1. synMethod() : 11
  2. synBlock() : 3

4、实例锁和全局锁

实例锁 -- 锁在某一个实例对象上。如果该类是单例,那么该锁也具有全局锁的概念。实例锁对应的就是synchronized关键字。
全局锁 -- 该锁针对的是类,无论实例多少个对象,那么线程都共享该锁。全局锁对应的就是static synchronized(或者是锁在该类的class或者classloader对象上)。

关于“实例锁”和“全局锁”有一个很形象的例子:

  1. pulbic class Something {
  2. public synchronized void isSyncA(){}
  3. public synchronized void isSyncB(){}
  4. public static synchronized void cSyncA(){}
  5. public static synchronized void cSyncB(){}
  6. }

假设,Something有两个实例x和y。分析下面4组表达式获取的锁的情况。
(01) x.isSyncA()与x.isSyncB()
(02) x.isSyncA()与y.isSyncA()
(03) x.cSyncA()与y.cSyncB()
(04) x.isSyncA()与Something.cSyncA()

(01) 不能被同时访问。因为isSyncA()和isSyncB()都是访问同一个对象(对象x)的同步锁!

  1. package com.demo.synchronize;
  2.  
  3. public class Something {
  4.  
  5. public synchronized void isSyncA(){
  6. try{
  7. for(int i=0;i<5;i++){
  8. Thread.sleep(100); // 休眠100ms
  9. System.out.println(Thread.currentThread().getName()+":isSyncA");
  10. }
  11. }catch(InterruptedException ie){
  12.  
  13. }
  14. }
  15.  
  16. public synchronized void isSyncB(){
  17. try{
  18. for(int i=0;i<5;i++){
  19. Thread.sleep(100); // 休眠100ms
  20. System.out.println(Thread.currentThread().getName()+":isSyncB");
  21. }
  22. }catch(InterruptedException ie){
  23.  
  24. }
  25. }
  26. }
  1. package com.demo.synchronize;
  2.  
  3. public class LockTest1 {
  4.  
  5. Something x = new Something();
  6. Something y = new Something();
  7.  
  8. // 比较x.isSyncA()与x.isSyncB()
  9. private void test1(){
  10. // 新建t11, t11会调用 x.isSyncA()
  11. Thread t11 = new Thread(
  12. new Runnable(){
  13. @Override
  14. public void run(){
  15. x.isSyncA();
  16. }
  17. },"t11");
  18.  
  19. // 新建t12, t12会调用 x.isSyncB()
  20. Thread t12 = new Thread(
  21. new Runnable(){
  22. @Override
  23. public void run(){
  24. x.isSyncB();
  25. }
  26. },"t12");
  27.  
  28. t11.start(); // 启动t11
  29. t12.start(); // 启动t12
  30. }
  31.  
  32. public static void main(String[] args){
  33. LockTest1 demo = new LockTest1();
  34. demo.test1();
  35. }
  36. }

运行结果:

  1. t11isSyncA
  2. t11isSyncA
  3. t11isSyncA
  4. t11isSyncA
  5. t11isSyncA
  6. t12isSyncB
  7. t12isSyncB
  8. t12isSyncB
  9. t12isSyncB
  10. t12isSyncB

(02) 可以同时被访问。因为访问的不是同一个对象的同步锁,x.isSyncA()访问的是x的同步锁,而y.isSyncA()访问的是y的同步锁。

  1. package com.demo.synchronize;
  2.  
  3. public class LockTest2 {
  4.  
  5. Something x = new Something();
  6. Something y = new Something();
  7.  
  8. // 比较x.isSyncA()与y.isSyncA()
  9. private void test2(){
  10. // 新建t21, t21会调用 x.isSyncA()
  11. Thread t21 = new Thread(
  12. new Runnable(){
  13. @Override
  14. public void run(){
  15. x.isSyncA();
  16. }
  17. },"t21");
  18.  
  19. // 新建t22, t22会调用y.isSyncA()
  20. Thread t22 = new Thread(
  21. new Runnable(){
  22. @Override
  23. public void run(){
  24. y.isSyncA();
  25. }
  26. },"t22");
  27.  
  28. t21.start(); // 启动t21
  29. t22.start(); // 启动t22
  30. }
  31.  
  32. public static void main(String[] args){
  33. LockTest2 demo = new LockTest2();
  34. demo.test2();
  35. }
  36. }

运行结果:

  1. t21isSyncA
  2. t22isSyncA
  3. t21isSyncA
  4. t22isSyncA
  5. t21isSyncA
  6. t22isSyncA
  7. t21isSyncA
  8. t22isSyncA
  9. t21isSyncA
  10. t22isSyncA

(03) 不能被同时访问。在Something.java类中加入两个静态方法cSyncA()和cSyncB(),因为cSyncA()和cSyncB()都是static类型,x.cSyncA()相当于Something.cSyncA(),y.cSyncB()相当于Something.cSyncB(),因此它们共用一个同步锁,不能被同时反问。

  1. package com.demo.synchronize;
  2.  
  3. public class Something {
  4.  
  5. public synchronized void isSyncA(){
  6. try{
  7. for(int i=0;i<5;i++){
  8. Thread.sleep(100); // 休眠100ms
  9. System.out.println(Thread.currentThread().getName()+":isSyncA");
  10. }
  11. }catch(InterruptedException ie){
  12.  
  13. }
  14. }
  15.  
  16. public synchronized void isSyncB(){
  17. try{
  18. for(int i=0;i<5;i++){
  19. Thread.sleep(100); // 休眠100ms
  20. System.out.println(Thread.currentThread().getName()+":isSyncB");
  21. }
  22. }catch(InterruptedException ie){
  23.  
  24. }
  25. }
  26.  
  27. public static synchronized void cSyncA(){
  28. try{
  29. for(int i=0;i<5;i++){
  30. Thread.sleep(100); // 休眠100ms
  31. System.out.println(Thread.currentThread().getName()+":cSyncA");
  32. }
  33. }catch(InterruptedException ie){
  34.  
  35. }
  36. }
  37.  
  38. public static synchronized void cSyncB(){
  39. try{
  40. for(int i=0;i<5;i++){
  41. Thread.sleep(100); // 休眠100ms
  42. System.out.println(Thread.currentThread().getName()+":cSyncB");
  43. }
  44. }catch(InterruptedException ie){
  45.  
  46. }
  47. }
  48. }
  1. package com.demo.synchronize;
  2.  
  3. public class LockTest3 {
  4.  
  5. Something x = new Something();
  6. Something y = new Something();
  7.  
  8. // 比较 x.cSyncA()与y.cSyncB()
  9. private void test3(){
  10. // 新建t31, t31会调用 x.cSyncA()
  11. Thread t31 = new Thread(
  12. new Runnable(){
  13. @Override
  14. public void run(){
  15. x.cSyncA();
  16. }
  17. },"t31");
  18.  
  19. // 新建t32, t32会调用 y.cSyncB()
  20. Thread t32 = new Thread(
  21. new Runnable(){
  22. @Override
  23. public void run(){
  24. y.cSyncB();
  25. }
  26. },"t32");
  27.  
  28. t31.start(); // 启动t31
  29. t32.start(); // 启动t32
  30. }
  31.  
  32. public static void main(String[] args){
  33. LockTest3 demo = new LockTest3();
  34. demo.test3();
  35. }
  36. }

运行结果:

  1. t31cSyncA
  2. t31cSyncA
  3. t31cSyncA
  4. t31cSyncA
  5. t31cSyncA
  6. t32cSyncB
  7. t32cSyncB
  8. t32cSyncB
  9. t32cSyncB
  10. t32cSyncB

(04) 可以被同时访问。因为isSyncA()是实例方法,x.isSyncA()使用的是对象x的锁;而cSyncA()是静态方法,Something.cSyncA()可以理解对使用的是“类的锁”。因此,它们是可以被同时访问的。

  1. package com.demo.synchronize;
  2.  
  3. public class LockTest4 {
  4.  
  5. Something x = new Something();
  6. Something y = new Something();
  7.  
  8. // 比较x.isSyncA()与Something.cSyncA()
  9. private void test4(){
  10. // 新建t41, t41会调用 x.isSyncA()
  11. Thread t41 = new Thread(
  12. new Runnable(){
  13. @Override
  14. public void run(){
  15. x.isSyncA();
  16. }
  17. },"t41");
  18.  
  19. // 新建t42, t42会调用Something.cSyncA()
  20. Thread t42 = new Thread(
  21. new Runnable(){
  22. @Override
  23. public void run(){
  24. Something.cSyncA();
  25. }
  26. },"t42");
  27.  
  28. t41.start(); // 启动t41
  29. t42.start(); // 启动t42
  30. }
  31.  
  32. public static void main(String[] args){
  33. LockTest4 demo = new LockTest4();
  34. demo.test4();
  35. }
  36. }

运行结果:

  1. t41isSyncA
  2. t42cSyncA
  3. t42cSyncA
  4. t41isSyncA
  5. t41isSyncA
  6. t42cSyncA
  7. t42cSyncA
  8. t41isSyncA
  9. t42cSyncA
  10. t41isSyncA

Java多线程(四)—— synchronized关键字续的更多相关文章

  1. Java多线程同步 synchronized 关键字的使用

    代表这个方法加锁,相当于不管哪一个线程A每次运行到这个方法时,都要检查有没有其它正在用这个方法的线程B(或者C D等),有的话要等正在使用这个方法的线程B(或者C D)运行完这个方法后再运行此线程A, ...

  2. java多线程中synchronized关键字的用法

    转自:http://www.cdtarena.com/javapx/201308/9596.html 由于同一进程内的多个线程共享内存空间,在Java中,就是共享实例,当多个线程试图同时修改某个实例的 ...

  3. Java多线程:synchronized关键字和Lock

    一.synchronized synchronized关键字可以用于声明方法,也可以用来声明代码块,下面分别看一下具体的场景(摘抄自<大型网站系统与Java中间件实践>) 案例一:其中fo ...

  4. 巨人大哥谈Java中的Synchronized关键字用法

    巨人大哥谈Java中的Synchronized关键字用法 认识synchronized 对于写多线程程序的人来说,经常碰到的就是并发问题,对于容易出现并发问题的地方价格synchronized基本上就 ...

  5. java 多线程四

    java 多线程一 java 多线程二 java 多线程三 java 多线程四 一个生产者,消费者的例子: import java.util.Stack; /** * Created by root ...

  6. java 多线程8 : synchronized锁机制 之 方法锁

    脏读 一个常见的概念.在多线程中,难免会出现在多个线程中对同一个对象的实例变量或者全局静态变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数 ...

  7. Java并发之synchronized关键字深度解析(二)

    前言 本文继续[Java并发之synchronized关键字深度解析(一)]一文而来,着重介绍synchronized几种锁的特性. 一.对象头结构及锁状态标识 synchronized关键字是如何实 ...

  8. Java进阶1. Synchronized 关键字

    Java进阶1. Synchronized 关键字 20131025 1.关于synchronized的简介: Synchronized 关键字代表对这个方法加锁,相当于不管那一个线程,运行到这个方法 ...

  9. Java多线程-同步:synchronized 和线程通信:生产者消费者模式

    大家伙周末愉快,小乐又来给大家献上技术大餐.上次是说到了Java多线程的创建和状态|乐字节,接下来,我们再来接着说Java多线程-同步:synchronized 和线程通信:生产者消费者模式. 一.同 ...

随机推荐

  1. AOJ1370: Hidden Anagrams(hash)

    题意 题目链接 Sol 直接对出现的次数hash即可,复杂度\(O(26n^2)\) 一开始没判长度条件疯狂wa #include<bits/stdc++.h> //#define int ...

  2. echarts功能配置实例----柱/折线、饼图

    ---恢复内容开始--- echarts中的柱状图和折线图的参数配置可以共用,一般只需要修改图表类型这一个参数即可. 一.echarts最简单的实例 1.折线图/柱状图 <html> &l ...

  3. jQuery 简单案例

    案例一:全选.反选.取消实例 <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  4. Android--手势及触摸事件的注意点(一)

    实现onInterceptTouchEvent方法可以用来拦截父ViewGroup传递下来的所有触屏事件,可以将所有触屏事件交由此ViewGroup自身的onTouchEvent来处理,也可以继续传递 ...

  5. windows网络编程中文 笔记(二)

    IPv4 地址段 IPv4地址类别 种类 网络部分 第1个数字 端点数字 A  8位  0-127  16777216 B  16位  128-191  65526 C  24位  193-223   ...

  6. MyBatis笔记----mybatis分页

    mybatis版本3.4以下 结构 spring-mvc.xml <?xml version="1.0" encoding="UTF-8"?> &l ...

  7. MongoDB 主从和Replica Set

    目前主要的MongoDB高可用架构包含: 主从架构 Replica set副本集方式 sharding分片 注意:使用高可用架构后ips,qps相比单实例都会有一定程度的下降,其中rs下降不是他太明显 ...

  8. PE 添加系统管理员账号(域控可加)转

    使用U盘制作一个PE系统,这里推荐老毛桃或者大白菜:开机进入Bios,选择U盘启动:进入U盘启动画面后,选择一个PE系统:进入PE系统后,我们去本机系统盘,将 C:/Windows/System32/ ...

  9. python3编写网络爬虫15-Splash的使用

    Splash是一个JavaScript渲染服务 是一个带有HTTP API的轻量级浏览器 同时对接了python的Twisted 和QT库 利用它可以实现对动态渲染页面的抓取 功能介绍 1.异步方式处 ...

  10. 【English】20190308

    hiring雇佣['haɪərɪŋ]   across跨越  field sales区域销售[fild]  [seɪlz] The Google Cloud team is growing and w ...