A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal cliqueis a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))

Now it is your job to judge if a given subset of vertices can form a maximal clique.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.

After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.

Output Specification:

For each of the M queries, print in a line Yes if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal; or if it is not a clique at all, print Not a Clique.

Sample Input:

8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1

Sample Output:

Yes
Yes
Yes
Yes
Not Maximal
Not a Clique
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int G[][] = {};
int Nv, Ne;
int seq[], hashTB[];
int main(){
scanf("%d%d", &Nv, &Ne);
for(int i = ; i < Ne; i++){
int v1, v2;
scanf("%d%d", &v1, &v2);
G[v1][v2] = G[v2][v1] = ;
}
int M;
scanf("%d", &M);
for(int i = ; i < M; i++){
fill(hashTB, hashTB + , );
int K;
scanf("%d", &K);
for(int j = ; j < K; j++){
scanf("%d", &seq[j]);
hashTB[seq[j]] = ;
}
int isClque = ;
for(int j = ; j < K; j++){
for(int m = j + ; m < K; m++){
if(G[seq[j]][seq[m]] == ){
isClque = ;
break;
}
if(isClque == )
break;
}
}
int isMax = ;
for(int n = ; n <= Nv; n++){
if(hashTB[n] == ){
int tag = ;
for(int p = ; p < K; p++){
if(G[seq[p]][n] == ){
tag = ;
break;
}
}
if(tag == ){
isMax = ;
break;
}
}
}
if(isMax == && isClque == ){
printf("Yes\n");
}else if(isClque == ){
printf("Not Maximal\n");
}else{
printf("Not a Clique\n");
}
}
cin >> M;
return ;
}

总结:

1、题意:给出一个点的集合,判断这些点是否是给出的无向图的极大团。根据题意,极大团是一个点的集合:这个集合中的任意两个点之间都存在一条边,且点的个数是极大的。

2、由于给出的节点数N较少,直接暴力循环即可。对每一个待判断集合中的点,都验证它是否与集合中其它点相连接即可。极大性验证:依次检验非集合内的点,如果存在一个点v与集合内的点都连接,则不是极大团。

A1142. Maximal Clique的更多相关文章

  1. PAT A1142 Maximal Clique (25 分)——图

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  2. PAT_A1142#Maximal Clique

    Source: PAT A1142 Maximal Clique (25 分) Description: A clique is a subset of vertices of an undirect ...

  3. PAT 甲级 1142 Maximal Clique

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343979159552 A clique is a subset o ...

  4. PAT 1142 Maximal Clique[难]

    1142 Maximal Clique (25 分) A clique is a subset of vertices of an undirected graph such that every t ...

  5. [PAT] 1142 Maximal Clique(25 分)

    1142 Maximal Clique(25 分) A clique is a subset of vertices of an undirected graph such that every tw ...

  6. PAT 1142 Maximal Clique

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  7. 1142. Maximal Clique (25)

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  8. 1142 Maximal Clique

    题意:给出一个图,定义这样一个结点子集subset,若subset中的任意两结点不都相邻,则称之为Not a Clique:若subset中的任意两结点都相邻,则称之为Clique:若subset中的 ...

  9. PAT (Advanced Level) Practice(更新中)

    Source: PAT (Advanced Level) Practice Reference: [1]胡凡,曾磊.算法笔记[M].机械工业出版社.2016.7 Outline: 基础数据结构: 线性 ...

随机推荐

  1. C# Note33: 总结C# 6.0/7.0 新特性

    先注明,本文主体参考自:C# 6.0新特性 目前代码中使用了很多C#6.0的新特性,下面以Point类来做相关叙述: public class Point { public int X { get; ...

  2. Client将数据读写HDFS流程

    HDFS介绍 HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的. 什么是分布式文件系统 分布式文件系统(Dist ...

  3. spec文件中的 %pre %post %preun %postun

    转载http://meinit.nl/rpm-spec-prepostpreunpostun-argument-values RPM has 4 parts where (shell) scripts ...

  4. WPF一步步实现完全无边框自定义Window(附源码)

    在我们设计一个软件的时候,有很多时候我们需要按照美工的设计来重新设计整个版面,这当然包括主窗体,因为WPF为我们提供了强大的模板的特性,这就为我们自定义各种空间提供了可能性,这篇博客主要用来介绍如何自 ...

  5. Python 常用模块总结

    模块的分类: 1.内置模块(python自带的比如像os,sys等模块)    2.自定义模块,自己写的一些模块    3.第三方模块(开源模块) 模块导入: 1.import sys         ...

  6. DELPHI中MDI子窗口的关闭 和打开

    Delphi中MDI子窗口的关闭方式默认为缩小而不是关闭,所以当你单击子窗口右上角的关闭按钮时会发觉该子窗口只是最小化,而不是你预期的那样被关闭.解决办法是在子窗口的OnClose事件处理过程中加入如 ...

  7. react 入坑笔记(一)

    一些概念: 1.组件:概念等同于 vue 中的组件,字面意思,不过 vue 中组件是以 .vue 结尾,通过 vue-loader 编译成 js,而 react 组件就是 js. 2.jsx:js 语 ...

  8. c++ 实现拓扑排序

    要简洁大方地实现拓扑排序,首先要了解两个标准模板 std::queue 和 std::vector 1 queue 添加头文件 #include<queue> 定义一个int类型的队列 q ...

  9. 简单聊聊Linux学习经历

    学习,是我们一生中都规避不了的一个话题,人的一生中都是在不断的学习,无论是功成名就的人士,还是一无是处的小混混,始终都处在一个不断学习的环境中,只是学习的内容千差万别,有的人是为了提升自己各方面的能力 ...

  10. web scraper——简单的爬取数据【二】

    web scraper——安装[一] 在上文中我们已经安装好了web scraper现在我们来进行简单的爬取,就来爬取百度的实时热点吧. http://top.baidu.com/buzz?b=1&a ...