题目大意:给定一个 N*M 的棋盘,棋盘上有些点不能放置任何东西,现在在棋盘上放置一些车,问最多可以放置多少个车而不会互相攻击。

题解:将放置一个车看作连接一条无向边,因为每一行和每一列之间只能放置一个车,即:车的位置在 (i,j) 时,表示第 i 行和第 j 列之间放置了一个车。可以发现,一个车不会影响到其他的行和列,因此所有的行和所有列之间是没有连边的,这符合二分图的性质。根据建模,跑匈牙利算法即可,时间复杂度为 \(O((N+M)*N*M)\)。

代码如下

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=401;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*--------------------------------------------------------*/ vector<int> G[maxn];
int match[maxn];bool vis[maxn];
int n,m,t,mpp[201][201];
int ans; void read_and_parse(){
n=read(),m=read(),t=read();
for(int i=1;i<=t;i++)mpp[read()][read()]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(!mpp[i][j])
G[i].pb(j+n),G[j+n].pb(i);
} bool dfs(int u){
for(auto v:G[u])if(!vis[v]){
vis[v]=1;
if(!match[v]||dfs(match[v])){
match[v]=u;return 1;
}
}
return 0;
} void solve(){
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(dfs(i))++ans;
}
printf("%d\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【CH6802】车的放置的更多相关文章

  1. P1350 车的放置

    P1350 车的放置 设$f[i][j]$为当前推到第$i$列,该列高度$h$,已经放了$j$个车的方案数 则$f[i][j]=f[i-1][j]+f[i-1][j-1]*(h-j+1)$ 但是我们发 ...

  2. 洛谷 P1350 车的放置

    洛谷 P1350 车的放置 题目描述 有下面这样的一个网格棋盘,a,b,c,d表示了对应边长度,也就是对应格子数. 当a=b=c=d=2时,对应下面这样一个棋盘 要在这个棋盘上放K个相互不攻击的车,也 ...

  3. 【题解】洛谷P1350 车的放置(矩阵公式推导)

    洛谷P1350:https://www.luogu.org/problemnew/show/P1350 思路 把矩阵分为上下两块N与M 放在N中的有i辆车 则放在M中有k-i辆车 N的长为a   宽为 ...

  4. hdu1281(棋盘游戏,车的放置)

    Problem Description 给定一个n * m的棋盘,在棋盘里放尽量多的国际象棋中的车,使他们不能相互攻击 已知有些格子不能放置,问最多能放置多少个车 并计算出必须棋盘上的必须点. Inp ...

  5. 【u022】车的放置

    [问题描述] [题解] 先考虑一个最简单的情况.如一个n*n的棋盘.然后要放k个车. 我们可以先选出k行即C(n,k); 然后在列上对这k个棋子进行一次全排列即A(n,k); 比如k = 4;N=5 ...

  6. CH6802 車的放置 和 CH6B24 Place the Robots

    6802 車的放置 0x60「图论」例题 描述 给定一个N行M列的棋盘,已知某些格子禁止放置.问棋盘上最多能放多少个不能互相攻击的車.車放在格子里,攻击范围与中国象棋的"車"一致. ...

  7. CH6802 車的放置

    原题链接 和棋盘覆盖(题解)差不多. 将行和列看成\(n+m\)个节点,且分属两个集合,如果某个节点没有被禁止,则行坐标对应节点向列坐标对应节点连边,然后就是求二分图最大匹配了. #include&l ...

  8. loj题目总览

    --DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...

  9. XVIII Open Cup named after E.V. Pankratiev. GP of Romania

    A. Balance 不难发现确定第一行第一列后即可确定全部,列不等式单纯形求解线性规划即可. #include<cstdio> #include<algorithm> usi ...

随机推荐

  1. css3的clip-path方法剪裁实现

    本例讲解如何通过clip-path把一个div(元素,可以是图片等)裁切成不同的形状,这里以一个div为例宽高均为300px 注意:不支持IE和Firefox,支持webkit浏览器,在现代浏览器中需 ...

  2. mysql参数优化记录

    服务器参数16G内存,4核CPUvim /etc/my.cnf 原: back_log=170 max_connections=600 max_user_connections=0 thread_co ...

  3. 老男孩python学习自修第二十一天【socket】

    1. 使用python编写一个静态的web服务器,能够处理静态页面的http请求 原理: a. 使用socket进行服务端和浏览器之间的通信 b. 使用多线程处理多个客户端浏览器的请求 c. 解析用户 ...

  4. QTP自动化测试-笔记 注释、大小写

    1 rem 注释内容 2 ' 注释内容 3 快捷键注释-选择代码行-ctrl+M 4 ctrl+shift+同- 取消注释 大小写 qtp:对小写敏感:如果 变量.sheet页是用小写字母命名,则使用 ...

  5. Java反射交换两个整型变量的值

    在一次面试中,做了这么一道题"交换两个整型变量的值",当时看到这个题目之后,会心一笑,这也太简单了--直接使用中间变量交换不就可以了吗?但是,面试官却说不需要返回值,在调用的地方, ...

  6. Javassist之使用字节码在运行时生成新的类 01

    介绍 Javassist是一个开源的分析.编辑和创建Java字节码的类库.是由东京工业大学的数学和计算机科学系的 Shigeru Chiba (千叶 滋)所创建的.它已加入了开放源代码JBoss 应用 ...

  7. Spring Boot 构建电商基础秒杀项目 (十二) 总结 (完结)

    SpringBoot构建电商基础秒杀项目 学习笔记 系统架构 存在问题 如何发现容量问题 如何使得系统水平扩展 查询效率低下 活动开始前页面被疯狂刷新 库存行锁问题 下单操作步骤多,缓慢 浪涌流量如何 ...

  8. JVM方法调用过程

    JVM方法调用过程 重载和重写 同一个类中,如果出现多个名称相同,并且参数类型相同的方法,将无法通过编译.因此,想要在同一个类中定义名字相同的方法,那么它们的参数类型必须不同.这种方法上的联系就是重载 ...

  9. Docker自制CentOS镜像

    系统环境:CentOS 7.3 将yum源切换到阿里源 可以直接写成一个脚本 #!/bin/sh mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos ...

  10. Python3入门基础--str常用方法

    Python基础之String常用方法 str():将其他类型的变量转换为str类型,例如: name = 'Jack' age = 22 course = ['web','Java','mysql' ...