前言

  • 在 Android开发中,性能优化策略十分重要
  • 本文主要讲解性能优化中的内存优化,希望你们会喜欢

目录

 

1. 定义

优化处理 应用程序的内存使用、空间占用

2. 作用

避免因不正确使用内存 & 缺乏管理,从而出现 内存泄露(ML)、内存溢出(OOM)、内存空间占用过大 等问题,最终导致应用程序崩溃(Crash)

3. 储备知识:Android 内存管理机制

3.1 简介

 

下面,将针对回收 进程、对象 、变量的内存分配 & 回收进行详细讲解

3.2 针对进程的内存策略

a. 内存分配策略

由 ActivityManagerService 集中管理 所有进程的内存分配

b. 内存回收策略

  • 步骤1:Application Framework 决定回收的进程类型
    Android中的进程 是托管的;当进程空间紧张时,会 按进程优先级低->>高的顺序 自动回收进程

Android将进程分为5个优先等级,具体如下:

 
  • 步骤2:Linux 内核真正回收具体进程
    1. ActivityManagerService 对 所有进程进行评分(评分存放在变量adj中)
    2. 更新评分到Linux 内核
    3. 由Linux 内核完成真正的内存回收

此处仅总结流程,这其中的过程复杂,有兴趣的读者可研究系统源码ActivityManagerService.java

3.3 针对对象、变量的内存策略

  • Android的对于对象、变量的内存策略同 Java
  • 内存管理 = 对象 / 变量的内存分配 + 内存释放

下面,将详细讲解内存分配 & 内存释放策略

a. 内存分配策略

  • 对象 / 变量的内存分配 由程序自动 负责
  • 共有3种:静态分配、栈式分配、 & 堆式分配,分别面向静态变量、局部变量 & 对象实例
  • 具体介绍如下

 

注:用1个实例讲解 内存分配

public class Sample {
// 该类的实例对象的成员变量s1、mSample1 & 指向对象存放在堆内存中
int s1 = 0;
Sample mSample1 = new Sample(); // 方法中的局部变量s2、mSample2存放在 栈内存
// 变量mSample2所指向的对象实例存放在 堆内存
public void method() {
int s2 = 0;
Sample mSample2 = new Sample();
}
}
// 变量mSample3的引用存放在栈内存中
// 变量mSample3所指向的对象实例存放在堆内存
// 该实例的成员变量s1、mSample1也存放在堆内存中
Sample mSample3 = new Sample();

b. 内存释放策略

  • 对象 / 变量的内存释放 由Java垃圾回收器(GC) / 帧栈 负责
  • 此处主要讲解对象分配(即堆式分配)的内存释放策略 = Java垃圾回收器(GC)

由于静态分配不需释放、栈式分配仅 通过帧栈自动出、入栈,较简单,故不详细描述

  • Java垃圾回收器(GC)的内存释放 = 垃圾回收算法,主要包括:

 
  • 具体介绍如下

 

4. 常见的内存问题 & 优化方案

  • 常见的内存问题如下

    1. 内存泄露
    2. 内存抖动
    3. 图片Bitmap相关
    4. 代码质量 & 数量
    5. 日常不正确使用
  • 下面,我将详细分析每项的内存问题 & 给出优化方案

4.1 内存泄露

  • 简介
    即 ML (Memory Leak),指 程序在申请内存后,当该内存不需再使用 但 却无法被释放 & 归还给 程序的现象

  • 对应用程序的影响
    容易使得应用程序发生内存溢出,即 OOM

内存溢出 简介:

 
  • 发生内存泄露的本质原因

 

4.2 图片资源Bitmap相关

  • 优化原因
    即 为什么要优化图片Bitmap资源,具体如下图:

 
  • 优化方向
    主要 从 以下方面优化图片Bitmap资源的使用 & 内存管理

 
  • 具体优化方案
    下面,我将详细讲解每个优化方向的具体优化方案

关于更加具体的介绍,请看文章:Android性能优化:那些关于Bitmap优化的小事

 

4.3 内存抖动

  • 简介

 
  • 优化方案
    尽量避免频繁创建大量、临时的小对象

4.4 代码质量 & 数量

  • 优化原因
    代码本身的质量(如 数据结构、数据类型等) & 数量(代码量的大小)可能会导致大量的内存问题,如占用内存大、内存利用率低等

  • 优化方案
    主要从代码总量、数据结构、数据类型、 & 数据对象引用 方面优化,具体如下

4.5 常见使用

  • 优化原因
    一些常见使用也可能引发大量的内存问题,下面我将详细介绍。

  • 优化方案

 

注:

  1. 还有1个内存优化的终极方案:调大 虚拟机Dalvik的堆内存大小
  2. 即 在AndroidManifest.xml的application标签中增加一个android:largeHeap属性(值 = true),从而通知虚拟机 应用程序需更大的堆内存
  3. 但不建议 & 不鼓励该做法

4.6 额外小技巧

此处,还有一些内存优化的小技巧希望告诉给大家

  • 技巧1:获取当前可使用的内存大小
    调用 ActivityManager.getMemoryClass()方法可获取当前应用可用的内存大小(单位 = 兆)

  • 技巧2:获取当前的内存使用情况
    在应用生命周期的任何阶段,调用 onTrimMemory()获取应用程序 当前内存使用情况(以内存级别进行识别),可根据该方法返回的内存紧张级别参数 来释放内存

Android 4.0 后提供的一个API

 
  • 技巧3:当视图变为隐藏状态时,则释放内存
    当用户跳转到不同的应用 & 视图不再显示时, 应释放应用视图所占的资源
  1. 注:此时释放所占用的资源能显著的提高系统的缓存处理容量
  2. 具体操作:实现当前Activity类的onTrimMemory()后,当用户离开视图时会得到通知;若得到返回的参数 = TRIM_MEMORY_UI_HIDDEN 即代表视图变为隐藏状态,则可释放视图所占用的资源.

5. 辅助内存优化的分析工具

  • 哪怕完全了解 内存的原因,但难免还是会出现人为难以发现的内存问题
  • 下面将简单介绍几个主流的辅助分析内存优化的工具,分别是
    1. MAT(Memory Analysis Tools)
    2. Heap Viewer
    3. Allocation Tracker
    4. Android Studio 的 Memory Monitor
    5. LeakCanary

5.1 MAT(Memory Analysis Tools)

  • 定义:一个Eclipse的 Java Heap 内存分析工具 ->>下载地址
  • 作用:查看当前内存占用情况

通过分析 Java 进程的内存快照 HPROF 分析,快速计算出在内存中对象占用的大小,查看哪些对象不能被垃圾收集器回收 & 可通过视图直观地查看可能造成这种结果的对象

5.2 Heap Viewer

  • 定义:一个的 Java Heap 内存分析工具
  • 作用:查看当前内存快照

可查看 分别有哪些类型的数据在堆内存总 & 各种类型数据的占比情况

5.3 Allocation Tracker

5.4 Memory Monitor

  • 简介:一个 Android Studio 自带 的图形化检测内存工具

  • 作用:跟踪系统 / 应用的内存使用情况。核心功能如下

 

5.5 LeakCanary

至此,关于内存优化的所有知识讲解完毕

6. 总结

  • 本文主要讲解内存优化的相关知识,总结如下:

 

链接:https://www.jianshu.com/p/9745a9375191 转载请注明原文链接

下面我将继续深入讲解 Android中的性能优化知识,有兴趣可以继续关注

Android性能优化:手把手带你全面实现内存优化的更多相关文章

  1. 【朝花夕拾】Android性能篇之(三)Java内存回收

    在上一篇日志([朝花夕拾]Android性能篇之(二)Java内存分配)中有讲到,JVM内存由程序计数器.虚拟机栈.本地方法栈.GC堆,方法区五个部分组成.其中GC堆是一块多线程的共享区域,它存在的作 ...

  2. Android性能优化:手把手带你全面了解 内存泄露 & 解决方案

    . 简介 即 ML (Memory Leak)指 程序在申请内存后,当该内存不需再使用 但 却无法被释放 & 归还给 程序的现象2. 对应用程序的影响 容易使得应用程序发生内存溢出,即 OOM ...

  3. Android性能调优篇之探索JVM内存分配

    开篇废话 今天我们一起来学习JVM的内存分配,主要目的是为我们Android内存优化打下基础. 一直在想以什么样的方式来呈现这个知识点才能让我们易于理解,最终决定使用方法为:图解+源代码分析. 欢迎访 ...

  4. 【朝花夕拾】Android性能篇之(二)Java内存分配

    前言        在内存方面,相比于C/C++程序员,咱们java系程序员算是比较幸运的,因为对于内存的分配和回收,都交给了JVM来处理了,而不需要手动在代码中去完成.有了虚拟机内存管理机制,也就不 ...

  5. Android群英传笔记——第十章:Android性能优化

    Android群英传笔记--第十章:Android性能优化 随着Android应用增多,功能越来越复杂,布局也越来越丰富了,而这些也成为了阻碍一个应用流畅运行,因此,对复杂的功能进行性能优化是创造高质 ...

  6. 【MDCC技术大咖秀】Android内存优化之OOM

    大神分析的很全面,所以就转过来保存一份,转自:http://www.csdn.net/article/2015-09-18/2825737/1 以下为正文: Android的内存优化是性能优化中很重要 ...

  7. Android内存优化之OOM

    内容大多都是和OOM有关的实践总结概要.理解错误或是偏差的地方,还请多包涵指正,谢谢!本人Q:1524447071 (一)Android的内存管理机制 Google在Android的官网上有这样一篇文 ...

  8. Android避免OOM(内存优化)

    Android内存优化是性能优化很重要的一部分,而如何避免OOM又是内存优化的核心. Android内存管理机制 android官网有一篇文章 Android是如何管理应用的进程与内存分配 Andro ...

  9. 【朝花夕拾】Android性能篇之(一)序言及JVM

    序言        笔者从事Anroid开发有些年头了,深知掌握Anroid性能优化方面的知识的必要性,这是一个程序员必须修炼的内功.在面试中,它是面试官的挚爱,在工作中,它是代码质量的拦路虎,其重要 ...

随机推荐

  1. 三十二、Linux 进程与信号——不可靠信号

    32.1 不可靠信号问题 发生信号时关联动作被重置为默认设置 信号可能丢失 程序片段 在进入 sig_int 与再次调用 signal 之间发生的 SIGINT 信号将不会捕获 导致进程终止 以前版本 ...

  2. tensorflow---alexnet training (tflearn)

    # 输入数据 import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) imp ...

  3. node.js 环境

    Centos 7.2 安装 Node.js 环境 Node.js 是运行在服务端的 JavaScript, 是基于 Chrome JavaScript V8 引擎建立的平台. 1. Node.js w ...

  4. [C++]数组处理相关函数(memcpy/memset等)

    头文件:string.h或者memory.h [1]void *memcpy(void *dest, const void *src, size_t n);//数组元素拷贝 功能:从源src所指的内存 ...

  5. 洛谷P1972 【[SDOI2009]HH的项链】

    这道题想了很久,发题解是为了理解的更深刻一点...(管理放我过好嘛qwq) 步入正题:这道题应该是很多做法,我选择的是离线+树状数组. 首先输入数组.用fisrt数组先记录元素最开始出现的位置,对应的 ...

  6. Spring boot中普通工具类不能使用@Value注入yml文件中的自定义参数的问题

    在写一个工具类的时候,因为要用到yml中的自定义参数,使用@Value发现值不能正常注入,都显示为null: yml文件中的自定义格式 调用工具类的时候不能new的方式 要使用@Autowired的方 ...

  7. 2017-2018-2 20165234 实验三 《Java面向对象程序设计》实验报告

    实验三 敏捷开发与XP实践 http://www.cnblogs.com/rocedu/p/4795776.html, Eclipse的内容替换成IDEA 参考 http://www.cnblogs. ...

  8. Invalid character found in the request target.

    背景:springboot项目内置tomcat9.0 调用的接口中有{}就会报错 解决办法: 新的tomcat新版本增加了一个新特性,就是严格按照 RFC 3986规范进行访问解析,而 RFC 398 ...

  9. 查找轮廓(cv2.findCountours函数)

    1.输入为二值图像,黑色为背景,白色为目标 2.该函数会修改原图像,因此若想保留原图像在,则需拷贝一份,在拷贝图里修改. 一.查找轮廓 cv2.findContours() 三个输入参数:输入图像(二 ...

  10. yolo

     将目标检测过程设计为为一个回归问题(One Stage Detection),一步到位, 直接从像素到 bbox 坐标和类别概率 优点: 速度快(45fps),效果还不错(mAP 63.4) 利用 ...