[BOI2007]Mokia 摩基亚(CDQ分治)
upd:\((x1,y1)(x2,y2)\)表示以\((x1,y1)\)为左上端点 \((x2,y2)\)为右下端点的矩形
本来以为是一道二位树状数组的模板,但是看数据范围之后就放弃了,边界既然到了2000000,那么我们只能使用其他办法来代替树状数组
于是,CDQ分治就诞生了!
此题我们可以把问题转化成cdq分治模板
回忆一下二位树状数组是怎么求二维区间查询的:对于区间[x1,y1][x2,y2],我们把它转化成$ (1,1)(x1-1,y1-1)+(1,1)(x2,y2)-(1,1)(x1-1,y2)-(1,1)(x2,y1-1) $求即可,所以对于每一个询问操作,把他看成四个坐标,求出前缀和就能找到答案
把操作的时间看作一维(时间在前的才可能对后面的操作有影响),把x,y看作后两维,对于\((1,1)(x,y)\),那么问题就转化成了\(timea<timeb xa<xb ya<yb\)的数量,也就是三位偏序模板了
注意几点:
1、树状数组的下标不能为0(0的lowbit的值也是0),所以我们需要把每一个点横纵坐标加一,最后w也要记得+1
2、注意区分询问和加法,在操作树状数组时要区分
给出代码:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d\n",__LINE__)
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
#define lb(x) (x)&-(x)
#define maxn 200005
#define maxm 2000005
struct node
{
int tim,x,y,val,id;
}e[maxn];
int cnt,a[maxm],w;
il void add(int x,int v)
{
while(x<=w)
{
a[x]+=v;
x+=lb(x);
}
}
il int query(int x)
{
int ans=0;
while(x)
{
ans+=a[x];
x-=lb(x);
}
return ans;
}
il bool cmp1(node a,node b)
{
return (a.x==b.x)?(a.y<b.y):(a.x<b.x);
}
il bool cmp(node a,node b)
{
return a.tim<b.tim;
}
il void CDQ(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>1;
CDQ(l,mid),CDQ(mid+1,r);
sort(e+l,e+mid+1,cmp1);
sort(e+mid+1,e+r+1,cmp1);
re int i=l,j=mid+1;
for(;j<=r;++j)
{
while(e[i].x<=e[j].x&&i<=mid)
{
if(e[i].id==0) add(e[i].y,e[i].val);
++i;
}
if(e[j].id==1) e[j].val+=query(e[j].y);
}
for(j=l;j<i;++j) if(e[j].id==0) add(e[j].y,-e[j].val);
}
int main()
{
read(),w=read()+1;
int opt=read();
while(opt!=3)
{
if(opt==1)
{
int x=read()+1,y=read()+1,val=read();
e[++cnt]=(node){cnt,x,y,val,0};
}
else
{
int x1=read(),y1=read(),x2=read()+1,y2=read()+1;
e[++cnt]=(node){cnt,x1,y1,0,1};
e[++cnt]=(node){cnt,x2,y2,0,1};
e[++cnt]=(node){cnt,x2,y1,0,1};
e[++cnt]=(node){cnt,x1,y2,0,1};
}
opt=read();
}
CDQ(1,cnt);
sort(e+1,e+cnt+1,cmp);
for(re int i=1;i<=cnt;++i)
{
if(e[i].id==1)
{
printf("%d\n",e[i].val+e[i+1].val-e[i+2].val-e[i+3].val);
i+=3;
}
}
return 0;
}
[BOI2007]Mokia 摩基亚(CDQ分治)的更多相关文章
- cogs1752[boi2007]mokia 摩基亚 (cdq分治)
[题目描述] 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它能 ...
- Luogu P4390 [BOI2007]Mokia 摩基亚 | CDQ分治
题目链接 $CDQ$分治. 考虑此时在区间$[l,r]$中,要计算$[l,mid]$中的操作对$[mid+1,r]$中的询问的影响. 计算时,排序加上树状数组即可. 然后再递归处理$[l,mid]$和 ...
- P4390 [BOI2007]Mokia 摩基亚 (CDQ解决三维偏序问题)
题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫米.但其真正高科 ...
- 洛谷 P4390 [BOI2007]Mokia 摩基亚 解题报告
P4390 [BOI2007]Mokia 摩基亚 题目描述 摩尔瓦多的移动电话公司摩基亚(\(Mokia\))设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户 ...
- 【BZOJ1176】[BOI2007]Mokia 摩基亚
[BZOJ1176][BOI2007]Mokia 摩基亚 题面 bzoj 洛谷 题解 显然的\(CDQ\)\(/\)树套树题 然而根本不想写树套树,那就用\(CDQ\)吧... 考虑到点\((x1,y ...
- [BOI2007]Mokia 摩基亚
Description: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫 ...
- 【cdq分治】【P4390】[BOI2007]Mokia 摩基亚
Description 给你一个 \(W~\times~W\) 的矩阵,每个点有权值,每次进行单点修改或者求某子矩阵内权值和,允许离线 Input 第一行是两个数字 \(0\) 和矩阵大小 \(W\) ...
- [洛谷P4390][BOI2007]Mokia 摩基亚
题目大意: 维护一个W*W的矩阵,每次操作可以增加某格子的权值,或询问某子矩阵的总权值. 题解:CDQ分治,把询问拆成四个小矩形 卡点:无 C++ Code: #include <cstdio& ...
- P4390 [BOI2007]Mokia 摩基亚
传送门 对于一个询问 $(xa,ya),(xb,yb)$,拆成 $4$ 个询问并容斥一下 具体就是把询问变成求小于等于 $xb,yb$ 的点数,减去小于等于 $xa-1,yb$ 和小于等于 $xb,y ...
随机推荐
- [转帖]一段关于Unix与 Linux的暗黑史
一段关于Unix与 Linux的暗黑史 https://blog.csdn.net/a343315623/article/details/51436715 微软曾经开发过 MS-DOS Xenix O ...
- 【学亮IT手记】Servlet的生命周期
1.1 Servlet的生命周期 1.1.1 Servlet的生命周期概述 1.1.1.1 什么是生命周期 生命周期:一个对象从创建到销毁过程. 1.1.1.2 Servlet的生命周期(*****) ...
- cordova微信支付回调App闪退
这是cordova版本太高,不兼容这个插件所导致的.解决方案是修改$your_project/plugins/cordova-plugin-wechat/scripts/android-install ...
- redis 的简单命令
以下实例讲解了如何启动 redis 客户端: 启动 redis 客户端,打开终端并输入命令 redis-cli.该命令会连接本地的 redis 服务. $redis-cli redis > re ...
- windows10企业版2016长期服务版激活
win10 2016 长期服务版的ISO文件中本身就带有KMS激活KEY,不用输入任何KEY,连接网络进入CMD,只要输入:slmgr /skms kms.digiboy.irslmgr /ato这两 ...
- Django restframework之Token验证的缺陷及jwt的简单使用
一.主要缺陷: 1.Token验证是放在一张表中,即authtoken_token中,key没有失效时间,永久有效,一旦泄露,后果不可想象,安全性极差. 2.不利于分布式部署或多个系统使用一套验证,a ...
- JAVA锁机制-可重入锁,可中断锁,公平锁,读写锁,自旋锁,
如果需要查看具体的synchronized和lock的实现原理,请参考:解决多线程安全问题-无非两个方法synchronized和lock 具体原理(百度) 在并发编程中,经常遇到多个线程访问同一个 ...
- java 静态成员访问
public class MqConfig { @Getter private static IProducerProcessor callBackProducerRetry; @Getter @Va ...
- Yii2框架GridView自带导出功能最佳实践
1. 导出excel的实现方法 (1)使用phpexcel封装工具类导出excel (2)使用爬虫爬取页面再处理封装工具类导出excel (3)使用页面渲染后处理html添加头部信息生成excel文件 ...
- 使用chcache 缓存
在项目里碰到了表单提交和ajax访问后台取到的request对象不是同一个对象,所以不能够资源共享,问了大神决定配置一个缓存来处理这个问题. 引用jar :ehcache-core-2.5.2.jar ...