[BOI2007]Mokia 摩基亚(CDQ分治)
upd:\((x1,y1)(x2,y2)\)表示以\((x1,y1)\)为左上端点 \((x2,y2)\)为右下端点的矩形
本来以为是一道二位树状数组的模板,但是看数据范围之后就放弃了,边界既然到了2000000,那么我们只能使用其他办法来代替树状数组
于是,CDQ分治就诞生了!
此题我们可以把问题转化成cdq分治模板
回忆一下二位树状数组是怎么求二维区间查询的:对于区间[x1,y1][x2,y2],我们把它转化成$ (1,1)(x1-1,y1-1)+(1,1)(x2,y2)-(1,1)(x1-1,y2)-(1,1)(x2,y1-1) $求即可,所以对于每一个询问操作,把他看成四个坐标,求出前缀和就能找到答案
把操作的时间看作一维(时间在前的才可能对后面的操作有影响),把x,y看作后两维,对于\((1,1)(x,y)\),那么问题就转化成了\(timea<timeb xa<xb ya<yb\)的数量,也就是三位偏序模板了
注意几点:
1、树状数组的下标不能为0(0的lowbit的值也是0),所以我们需要把每一个点横纵坐标加一,最后w也要记得+1
2、注意区分询问和加法,在操作树状数组时要区分
给出代码:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d\n",__LINE__)
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
#define lb(x) (x)&-(x)
#define maxn 200005
#define maxm 2000005
struct node
{
int tim,x,y,val,id;
}e[maxn];
int cnt,a[maxm],w;
il void add(int x,int v)
{
while(x<=w)
{
a[x]+=v;
x+=lb(x);
}
}
il int query(int x)
{
int ans=0;
while(x)
{
ans+=a[x];
x-=lb(x);
}
return ans;
}
il bool cmp1(node a,node b)
{
return (a.x==b.x)?(a.y<b.y):(a.x<b.x);
}
il bool cmp(node a,node b)
{
return a.tim<b.tim;
}
il void CDQ(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>1;
CDQ(l,mid),CDQ(mid+1,r);
sort(e+l,e+mid+1,cmp1);
sort(e+mid+1,e+r+1,cmp1);
re int i=l,j=mid+1;
for(;j<=r;++j)
{
while(e[i].x<=e[j].x&&i<=mid)
{
if(e[i].id==0) add(e[i].y,e[i].val);
++i;
}
if(e[j].id==1) e[j].val+=query(e[j].y);
}
for(j=l;j<i;++j) if(e[j].id==0) add(e[j].y,-e[j].val);
}
int main()
{
read(),w=read()+1;
int opt=read();
while(opt!=3)
{
if(opt==1)
{
int x=read()+1,y=read()+1,val=read();
e[++cnt]=(node){cnt,x,y,val,0};
}
else
{
int x1=read(),y1=read(),x2=read()+1,y2=read()+1;
e[++cnt]=(node){cnt,x1,y1,0,1};
e[++cnt]=(node){cnt,x2,y2,0,1};
e[++cnt]=(node){cnt,x2,y1,0,1};
e[++cnt]=(node){cnt,x1,y2,0,1};
}
opt=read();
}
CDQ(1,cnt);
sort(e+1,e+cnt+1,cmp);
for(re int i=1;i<=cnt;++i)
{
if(e[i].id==1)
{
printf("%d\n",e[i].val+e[i+1].val-e[i+2].val-e[i+3].val);
i+=3;
}
}
return 0;
}
[BOI2007]Mokia 摩基亚(CDQ分治)的更多相关文章
- cogs1752[boi2007]mokia 摩基亚 (cdq分治)
[题目描述] 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它能 ...
- Luogu P4390 [BOI2007]Mokia 摩基亚 | CDQ分治
题目链接 $CDQ$分治. 考虑此时在区间$[l,r]$中,要计算$[l,mid]$中的操作对$[mid+1,r]$中的询问的影响. 计算时,排序加上树状数组即可. 然后再递归处理$[l,mid]$和 ...
- P4390 [BOI2007]Mokia 摩基亚 (CDQ解决三维偏序问题)
题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫米.但其真正高科 ...
- 洛谷 P4390 [BOI2007]Mokia 摩基亚 解题报告
P4390 [BOI2007]Mokia 摩基亚 题目描述 摩尔瓦多的移动电话公司摩基亚(\(Mokia\))设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户 ...
- 【BZOJ1176】[BOI2007]Mokia 摩基亚
[BZOJ1176][BOI2007]Mokia 摩基亚 题面 bzoj 洛谷 题解 显然的\(CDQ\)\(/\)树套树题 然而根本不想写树套树,那就用\(CDQ\)吧... 考虑到点\((x1,y ...
- [BOI2007]Mokia 摩基亚
Description: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫 ...
- 【cdq分治】【P4390】[BOI2007]Mokia 摩基亚
Description 给你一个 \(W~\times~W\) 的矩阵,每个点有权值,每次进行单点修改或者求某子矩阵内权值和,允许离线 Input 第一行是两个数字 \(0\) 和矩阵大小 \(W\) ...
- [洛谷P4390][BOI2007]Mokia 摩基亚
题目大意: 维护一个W*W的矩阵,每次操作可以增加某格子的权值,或询问某子矩阵的总权值. 题解:CDQ分治,把询问拆成四个小矩形 卡点:无 C++ Code: #include <cstdio& ...
- P4390 [BOI2007]Mokia 摩基亚
传送门 对于一个询问 $(xa,ya),(xb,yb)$,拆成 $4$ 个询问并容斥一下 具体就是把询问变成求小于等于 $xb,yb$ 的点数,减去小于等于 $xa-1,yb$ 和小于等于 $xb,y ...
随机推荐
- Svn基本操作
日常开发中使用到的Svn基本操作 svn https://tortoisesvn.net/ https://www.visualsvn.com/server/download/ 1. 检 ...
- 随机森林(Random Forest)
阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Pyth ...
- java学习之—链表(3)
/** * 使用链表实现队列 * Create by Administrator * 2018/6/19 0019 * 下午 4:37 **/ public class Link { public l ...
- npm安裝、卸載、刪除、撤銷發佈包、更新版本信息
利用npm安裝包: 全局安裝:npm install -g 模塊安裝 局部安裝(可以使用repuire(‘模塊名’)引用):npm install 模塊名稱 如果權限不夠,就是用管理員方式安裝. 本地 ...
- LodopJS代码模版的加载和赋值
Lodop模版有两种方法,一种是传统的JS语句,可以用JS方法里的eval来执行,一种是文档式模版,是特殊格式的base64码,此篇博文介绍JS模版的加载和赋值.两种模版都可以存入一下地方进行调用,比 ...
- Lodop删除语句Deleted只能内嵌设计维护可用
有些人想用类似如下的语句删除打印项,或判断后把不需要的打印项删除,这种删除语句只能在打印设计或打印维护内嵌的时候使用,打印预览内嵌也不能使用.LODOP.SET_PRINT_STYLEA(2,'Del ...
- Directory of X:\EFI\Microsoft\Boot
Directory of X:\EFI\Microsoft\Boot 2017/06/21 15:14 <DIR> . 2017/06/21 15:14 <DIR> .. 20 ...
- 后台web端的react
在api.js里,存放着各种功能引用的方法,比如这个fakeRegister,里面传参数params,返回要要调回的地址,${HOST1}/user/register requset会返回codeme ...
- Spring MVC 使用介绍(三)—— Controller接口控制器
一.概述 Controller接口类图如下,其中,BaseCommandController已从Spring 4移除 基于继承Controller接口的方式已经不推荐使用,仅供学习参考 二.基于Con ...
- 以@GetMapping为例,SpringMVC 组合注解
@GetMapping是一个组合注解,是@RequestMapping(method = RequestMethod.GET)的缩写.该注解将HTTP Get 映射到 特定的处理方法上.