《算法导论》 — Chapter 7 高速排序
序
高速排序(QuickSort)也是一种排序算法,对包括n个数组的输入数组。最坏情况执行时间为O(n^2)。
尽管这个最坏情况执行时间比較差。可是高速排序一般是用于排序的最佳有用选择。这是由于其平均性能相当好。期望的执行时间为O(nlgn)。且O(nlgn)中隐含的常数因子非常小。另外它还能够进行就地排序在虚拟环境中也能非常好的工作。
原理
高速排序也和合并排序一样,基于分治法,分为分解、解决、合并三个步骤。
分解:数组array[low…high]被分为两个(可能空)子数组array[low…temp-1]和array[temp+1…high]。使得array[low…temp-1]中的每个元素都小于等于array[temp],而array[temp+1…high]中的每个元素都大于array[temp],下标temp也是在这个过程中被计算出来;
解决:通过递归的调用高速排序。对子数组array[low…temp-1],array[temp+1…high]进行排序;
合并:由于两个子数组是就地排序的。将他们的合并不须要操作,整个数组array[low…high]是已经排好序的。
本章介绍了高速排序算法的原理、程序实现(包括随机化版本号)及其性能分析。
快排算法实现
#include <iostream>
#include <ctime>
#include <cstdlib>
#define N 10
using namespace std;
//高速排序的递归算法
void quickSort(int * array, int low, int high);
//求切割点
int partition(int * array, int low, int high);
//交换两个变量的值
void exchange(int &a, int &b);
int main()
{
//声明一个待排序数组
int array[N];
//设置随机化种子,避免每次产生同样的随机数
srand(time(0));
for (int i = 0; i<N; i++)
{
array[i] = rand() % 101;//数组赋值使用随机函数产生1-100之间的随机数
}
cout << "排序前:" << endl;
for (int j = 0; j<N; j++)
{
cout << array[j] << " ";
}
cout << endl << "排序后:" << endl;
//调用高速排序函数对该数组进行排序
quickSort(array, 0, N - 1);
for (int k = 0; k<N; k++)
{
cout << array[k] << " ";
}
cout << endl;
return 0;
}//main
void quickSort(int * array, int low, int high)
{
if (low < high)
{
int temp = partition(array, low, high);
quickSort(array, low, temp - 1);
quickSort(array, temp + 1, high);
}
}
int partition(int * array, int low, int high)
{
int i = low - 1;
//默认将划分段的最后一个元素为主元
int x = array[high];
for (int j = low; j<high; j++)
{
if (array[j] <= x)//在array[i]左边都是小于x即array[high]的数,右边均是大于它的数
{
i += 1;
exchange(array[i], array[j]);
}
}
exchange(array[i + 1], array[high]);
return i + 1;//所以循环完成后。i+1就是该数组的切割点
}
void exchange(int &a, int &b)
{
int temp = a;
a = b;
b = temp;
}
高速排序的随机化版本号
在上面介绍的高速排序算法实现中,Partition(A , p , r)总是默认A[r]为主元,作为比較标准。假设能够採用随机取样的随机化技术的话。将会使得分析更加简单。以下是随机化版本号的高速排序算法实现:
#include <iostream>
#include <ctime>
#include <cstdlib>
#define N 10
using namespace std;
//高速排序的递归算法
void quickSort(int * array, int low, int high);
//求切割点
int partition(int * array, int low, int high);
//以low ~ high 之间的一个随机元素作为主元 , 求切割点
int randomPartition(int *array, int low, int high);
//交换两个变量的值
void exchange(int &a, int &b);
int main()
{
//声明一个待排序数组
int array[N];
//设置随机化种子,避免每次产生同样的随机数
srand(time(0));
for (int i = 0; i<N; i++)
{
array[i] = rand() % 101;//数组赋值使用随机函数产生1-100之间的随机数
}
cout << "排序前:" << endl;
for (int j = 0; j<N; j++)
{
cout << array[j] << " ";
}
cout << endl << "排序后:" << endl;
//调用高速排序函数对该数组进行排序
quickSort(array, 0, N - 1);
for (int k = 0; k<N; k++)
{
cout << array[k] << " ";
}
cout << endl;
system("pause");
return 0;
}//main
void quickSort(int * array, int low, int high)
{
if (low < high)
{
int temp = randomPartition(array, low, high);
quickSort(array, low, temp - 1);
quickSort(array, temp + 1, high);
}
}
int partition(int * array, int low, int high)
{
int i = low - 1;
//默认将划分段的最后一个元素为主元
int x = array[high];
for (int j = low; j<high; j++)
{
if (array[j] <= x)//在array[i]左边都是小于x即array[high]的数。右边均是大于它的数
{
i += 1;
exchange(array[i], array[j]);
}
}
exchange(array[i + 1], array[high]);
return i + 1;//所以循环完成后,i+1就是该数组的切割点
}
int randomPartition(int *array, int low, int high)
{
//找到low ~ high 之间的一个随机位置
int i = rand() % (high - low + 1) + low;
//交换该随机主元至尾部,
exchange(array[i], array[high]);
return partition(array, low, high);
}
void exchange(int &a, int &b)
{
int temp = a;
a = b;
b = temp;
}
随机版本号的快排与普通快排差别并非非常大,修改的不过求切割点步骤中的主元选取,也就是添加了randomPartition函数,选定好主元元素下标i后。将该元素交换至段尾,依旧调用partition函数求切割点。
高速排序性能分析
高速排序的执行时间与划分是否对称有关。而后者又与选择了哪一个元素进行划分有关。假设划分是对称的,那么本算法在渐近意义上与合并排序一样快。假设划分是不正确称的那么本算法在渐进意义上与插入排序一样慢。以下分别讨论高速排序的最坏情况划分、最佳情况划分、平衡的划分。
最坏情况划分:高速排序的最坏情况划分行为发生在划分过程中产生的两个区域分别包括n-1个元素和0个元素的时候。假设算法每次递归调用都出现了这样的不正确称划分。划分的时间代价为O(n)。由于对一个大小为0的数组进行递归调用后,返回了T(n)=O(1),故算法的执行时间可递归的表示为:
T(n) = T(n-1) + T(0) + O(n) = T(n-1) + O(n)
从直观上来看。假设将每一层递归的代价加起来,就能够得到一个算术级数(等式(array,2)其和值的量极为O(n^2))利用代换法能够比較直接的证明递归式 T(n) = T(n-1) + O(n)的解为 T(n) = O(n^2)。
因此假设在算法的每一层递归上,划分都是最大程度不正确称的。那么算法的执行时间为O(n^2),亦即高速排序算法的最坏情况执行时间不如插入排序的好。
此外当输入数组全然排好序时,高速排序的执行时间是O(n^2),而插入排序的执行时间为O(n)。
最佳情况划分:在Partition可能做的最平衡划分中,得到的两个子问题的大小都不可能大于[n/2],由于若当中一个子问题的大小为[n/2]。则另外一个子问题的大小必定为[n/2]-1。在这样的情况下。高速排序的执行速度要快得多。这时表达其执行时间的递归式为:
T(n) <= 2T(n/2) + O(n)
解该递归式可得T(n) = O(nlgn)。由于在每一层递归划分的两边都是对称的。因此从渐进意义上来看。算法执行的就更快了。
平衡的划分: 高速排序的平均情况执行时间与其最佳情况执行时间非常接近,而不是非常接近与其最坏情况执行时间(证明原因具体參考《算法导论》原书第二版P88),由于不论什么一种按常数比例进行划分都会产生深度为O(lgn)的递归树,当中每一层的代价都是O(n),因而每当依照常数比例进行划分时,总的执行时间都是O(nlgn)。
《算法导论》 — Chapter 7 高速排序的更多相关文章
- 基于visual Studio2013解决算法导论之055拓扑排序
题目 拓扑排序 解决代码及点评 // 拓扑排序.cpp : 定义控制台应用程序的入口点. // // 深度优先.cpp : 定义控制台应用程序的入口点. // // 图的邻接表表示.cpp : ...
- 基于visual Studio2013解决算法导论之012计数排序
题目 计数排序 解决代码及点评 #include <stdio.h> #include <stdlib.h> #include <malloc.h> #in ...
- 排序算法的c++实现——计数排序
任何比较排序算法的时间复杂度的上限为O(NlogN), 不存在比o(nlgN)更少的比较排序算法.如果想要在时间复杂度上超过O(NlogN)的时间复杂度,肯定需要加入其它条件.计数排序就加入了限制条件 ...
- 《算法导论》 — Chapter 8 线性时间排序
序 到目前为止,关于排序的问题,前面已经介绍了很多,从插入排序.合并排序.堆排序以及快速排序,每一种都有其适用的情况,在时间和空间复杂度上各有优势.它们都有一个相同的特点,以上所有排序的结果序列,各个 ...
- 【从零学习经典算法系列】分治策略实例——高速排序(QuickSort)
在前面的博文(http://blog.csdn.net/jasonding1354/article/details/37736555)中介绍了作为分治策略的经典实例,即归并排序.并给出了递归形式和循环 ...
- 排序算法之高速排序(Java)
//高速排序 public class Quick_Sort { // 排序的主要算法 private int Partition(int[] data, int start, int end) { ...
- 《算法导论》 — Chapter 7 快速排序
序 快速排序(QuickSort)也是一种排序算法,对包含n个数组的输入数组,最坏情况运行时间为O(n^2).虽然这个最坏情况运行时间比较差,但是快速排序通常是用于排序的最佳实用选择,这是因为其平均性 ...
- (搬运)《算法导论》习题解答 Chapter 22.1-1(入度和出度)
(搬运)<算法导论>习题解答 Chapter 22.1-1(入度和出度) 思路:遍历邻接列表即可; 伪代码: for u 属于 Vertex for v属于 Adj[u] outdegre ...
- 《算法导论》读书笔记之排序算法—Merge Sort 归并排序算法
自从打ACM以来也算是用归并排序了好久,现在就写一篇博客来介绍一下这个算法吧 :) 图片来自维基百科,显示了完整的归并排序过程.例如数组{38, 27, 43, 3, 9, 82, 10}. 在算法导 ...
随机推荐
- [Java 并发] Java并发编程实践 思维导图 - 第二章 线程安全性
依据<Java并发编程实践>一书整理的思维导图.
- javaee加密部署,tomcat使用自己的classloader解密【正解】
[起因] 公司需要对一个web项目进行加密之后出售, 大家都知道的,class很好反编译, 所以需要对class文件先进行加密, 然后使用自己的classloader进行解密并加载. [步骤] 大概分 ...
- C#加密与解密
密码加密之类的用处,直接复制黏贴,可用 1.加密的代码: /// <summary> /// DEC 加密过程 /// </summary> /// <param nam ...
- sed 技巧一例:特定位置插入
通过一例子熟悉 sed 的运用 下面命令是在修改 ~/fs/install/nzos.conf 文件, 并在 env 第一次出现的地方再添加一行 env LXC_EXTRA_PORT=5556 sed ...
- Android 保存用户偏好设置
很多情况下都允许用户根据自己的习惯和爱好去设置软件,而我们需要保存这些设置,可以用一个专业保存用户偏好的类:SharedPreferences. 这个类是实现方法其实也就是创建和修改 XML 文件, ...
- Net MVC微信扫码支付
微信扫码支付+Asp.Net MVC 这里的扫码支付指的是PC网站上面使用微信支付,也就是官方的模式二,网站是Asp.net MVC,整理如下. 一.准备工作 使用的微信API中的统一下单方法,关键的 ...
- win32 sdk绘制ListBox控件
1>产生: // HWND CreateLB(HWND parentWnd) { HWND hListBox=0; hListBox = CreateWindow("LISTBOX&q ...
- 微信JSAPI支付(比较详细) 关于getRrandWCPayRequest:fail_invalid appid 错误
原文:微信JSAPI支付(比较详细) 关于getRrandWCPayRequest:fail_invalid appid 错误 首先微信支付需注册 微信公从平台开发 和 微信支付商户平台 关于4个密 ...
- catalan 数——卡特兰数(转)
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- 51cto大数据培训路线
Java Java IO/NIO JVM原理与配置.调优 Socket 网络套接字技术 Java Collection java Reflection 多线程与并发编程 设计模式 Collection ...