大数据时代,我们为什么使用hadoop

我们先来看看大数据时代,

什么叫大数据,“大”,说的并不仅是数据的“多”!不能用数据到了多少TB ,多少PB 来说。

对于大数据,可以用四个词来表示:大量,多样,实时,不确定。

也就是数据的量庞大,数据的种类繁杂多样话,数据的变化飞快,数据的真假存疑。

大量:这个大家都知道,想百度,淘宝,腾讯,Facebook,Twitter等网站上的一些信息,这肯定算是大数据了,都要存储下来。

多样:数据的多样性,是说数据可能是结构型的数据,也可能是非结构行的文本,图片,视频,语音,日志,邮件等。

实时:大数据需要快速的,实时的进行处理。如果说对时间要求低,那弄几个机器,对小数据进行处理,等个十天半月的出来结果,这样也没有什么意义了。

不确定: 数据是存在真伪的,各种各样的数据,有的有用,有的没用。很难辨析。

根据以上的特点,我们需要一个东西,来:

1存储大量数据

2快速的处理大量数据

3从大量数据中进行分析

于是就有了这样一个模型hadoop。

hadoop的历史就不说了。先来看看模型。

这就相当于一个生态系统,或者可以看成一个操作系统XP,win7.

HDFS和MapReduce为操作系统的核心,Hive,Pig,Mathout,Zookeeper,Flume,Sqoop,HBase等,都是操作系统上的一些软件,或应用。

HDFS:(Hadoop Distributed File System),Hadoop分布式文件系统。从名字上就看出了它的两点功能。

基本功能,存文件,是一个文件系统;另外这个文件系统是分布式的;

从图上来看,HDFS的简单原理。

Rack1,Rack2,Rack3是三个机架;

1,2,3,4,5,6,7,8,9,10,11,12 是机架上的十二台服务器。

Block A, Block B, Block C为三个信息块,也就是要存的数据。

从整体布局上来看,信息块被分配到机架上。看似很均匀。这样分配的目的,就是备份,防止某一个机器宕机后,单点故障的发生。

MapReduce,(Map + Reduce),就看成是计算的功能。可以对数据进行处理。

它加快了计算。主要也是通过上图的布局。将数据分布到多个服务器上。当有任务了,比如查询,或者比较大小,先让每台服务器,都处理自己的存储中文件。然后再将所有服务器的处理结果进行第二次处理。最后将结果返回。

其实,hadoop还有一点好处,就是省钱。

框架开源的,免费的,服务器也不用特别牛X的。

省钱才是硬道理。

另外,从别的资料看到一种解释mapreduce的方式,很简单

Goal: count the number of books in the library.

Map: You count up shelf #1, I count up shelf #2.

(The more people we get, the faster this part goes. )

Reduce: We all get together and add up our individual counts.

CSDN地址: http://blog.csdn.net/weixuehao/article/details/14126199

大数据时代,我们为什么使用hadoop的更多相关文章

  1. 大数据时代快速SQL引擎-Impala

    背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适 ...

  2. 转:大数据时代快速SQL引擎-Impala

    本文来自:http://blog.csdn.net/yu616568/article/details/52431835 如有侵权 可立即删除 背景 随着大数据时代的到来,Hadoop在过去几年以接近统 ...

  3. 大数据时代之hadoop(五):hadoop 分布式计算框架(MapReduce)

    大数据时代之hadoop(一):hadoop安装 大数据时代之hadoop(二):hadoop脚本解析 大数据时代之hadoop(三):hadoop数据流(生命周期) 大数据时代之hadoop(四): ...

  4. 【Hadoop】大数据时代,我们为什么使用hadoop

    博客已转移,请借一步说话.http://www.daniubiji.cn/archives/538 我们先来看看大数据时代, 什么叫大数据,“大”,说的并不仅是数据的“多”!不能用数据到了多少TB , ...

  5. 大数据项目实践:基于hadoop+spark+mongodb+mysql+c#开发医院临床知识库系统

    一.前言 从20世纪90年代数字化医院概念提出到至今的20多年时间,数字化医院(Digital Hospital)在国内各大医院飞速的普及推广发展,并取得骄人成绩.不但有数字化医院管理信息系统(HIS ...

  6. 大数据时代的IT架构设计

    大数据时代的IT架构设计(来自互联网.银行等领域的一线架构师先进经验分享) IT架构设计研究组 编著   ISBN 978-7-121-22605-2 2014年4月出版 定价:49.00元 208页 ...

  7. 【大数据】Summingbird(Storm + Hadoop)的demo运行

    一.前言 为了运行summingbird demo,笔者走了很多的弯路,并且在国内基本上是查阅不到任何的资料,耗时很久才搞定了demo的运行.真的是一把辛酸泪,有兴趣想要研究summingbird的园 ...

  8. 跟上节奏 大数据时代十大必备IT技能(转)

    新的想法诞生新的技术,从而造出许多新词,云计算.大数据.BYOD.社交媒体……在互联网时代,各种新词层出不穷,让人应接不暇.这些新的技术,这些新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最 ...

  9. 大数据时代的技术hive:hive介绍

    我最近研究了hive的相关技术,有点心得,这里和大家分享下. 首先我们要知道hive到底是做什么的.下面这几段文字很好的描述了hive的特性: 1.hive是基于Hadoop的一个数据仓库工具,可以将 ...

随机推荐

  1. java中IO写文件工具类

    以下是一些依据经常使用java类进行组装的对文件进行操作的类,平时,我更喜欢使用Jodd.io中提供的一些对文件的操作类,里面的方法写的简单易懂. 当中jodd中提供的JavaUtil类中提供的方法足 ...

  2. 工作笔记3.手把手教你搭建SSH(struts2+hibernate+spring)环境

    上文中我们介绍<工作笔记2.软件开发经常使用工具> 从今天開始本文将教大家怎样进行开发?本文以搭建SSH(struts2+hibernate+spring)框架为例,共分为3步: 1)3个 ...

  3. 高性能双端js模板---simplite

    simplite是一款js实现的模板引擎,它能够完成浏览器端js模版和node服务器端js模板的数据渲染,渲染性能达到引擎的极限. 渲染性能十分突出. 支持浏览器端和node服务器端模板渲染. 它简单 ...

  4. JSR303 Bean Validation 技术规范特性概述

    概述 Bean Validation 规范 Bean 是 Java Bean 的缩写,在 Java 分层架构的实际应用中,从表示层到持久化层,每一层都需要对 Java Bean 进行业务符合性验证,如 ...

  5. 在ASP.NET应用中执行后台任务

    在ASP.NET应用中执行后台任务 昨天下午,在微软的MVP 2015社区大讲堂上给大家分享了一个题目:在ASP.NET应用中执行后台任务.这是一点都不高大上,并且还有点土气的技术分享.不过我相信很多 ...

  6. UiAutomator源码分析之UiAutomatorBridge框架

    上一篇文章<UIAutomator源码分析之启动和运行>我们描述了uitautomator从命令行运行到加载测试用例运行测试的整个流程,过程中我们也描述了UiAutomatorBridge ...

  7. Oracle 11g sys,system 密码忘记设置解决办法

    原文:Oracle 11g sys,system 密码忘记设置解决办法 1.启动sqlplus 2.请输入用户名:  sqlplus/as sysdba 3.输入口令: 直接回车 4.连接到: Ora ...

  8. SQL点滴25—T-SQL面试语句,练练手

    原文:SQL点滴25-T-SQL面试语句,练练手 1. 用一条SQL语句查询出每门课都大于80分的学生姓名 name   kecheng    fenshu 张三     语文     81张三    ...

  9. Web Service单元测试工具实例介绍之SoapUI

    原文  Web Service单元测试工具实例介绍之SoapUI SoapUI是当前比较简单实用的开源Web Service测试工具,提供桌面应用程序和IDE插件程序两种使用方式.能够快速构建项目和组 ...

  10. leetcode[67] Plus One

    题目:对一个用vector存的数字进行加1,然后返回加1后的值. 一次就在oj上通过了. 就是进位加上当前位如果大于9,那就当前位等于0: 随后进位还为1的话就是在数组前面插入一个1: class S ...