hdu 1098 Ignatius's puzz
有关数论方面的题要仔细阅读,分析公式。
no exists that a,then print "no".
100
9999
题目大意:方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整出;输入a;
解题报告:假设存在这个数a ,因为对于任意x方程都成立,所以,当x=1时f(x)=18+ka;有因为f(x)能被65整出,这可得出f(x)=n*65;
即:18+ka=n*65;若该方程有整数解则说明假设成立。
所以,只要找到a,使得18+k*a能被65整除,也就解决了这个题目.
#include<iostream>
using namespace std;
int main()
{
int k,i;
while(scanf("%d",&k)!=EOF)
{
for(i=;i<=;i++)
{
if((+k*i)%==){printf("%d\n",i);break;}
}
if(i>)printf("no\n");
}
return ;
}
hdu 1098 Ignatius's puzz的更多相关文章
- HDU 1098 Ignatius's puzzle
http://acm.hdu.edu.cn/showproblem.php?pid=1098 题意 :输入一个K,让你找一个a,使得f(x)=5*x^13+13*x^5+k*a*x这个f(x)%65等 ...
- HDU 1098 Ignatius's puzzle(数学归纳)
以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...
- HDU - 1098 - Ignatius's puzzle - ax+by=c
http://acm.hdu.edu.cn/showproblem.php?pid=1098 其实一开始猜测只要验证x=1的时候就行了,但是不知道怎么证明. 题解表示用数学归纳法,假设f(x)成立,证 ...
- 题解报告:hdu 1098 Ignatius's puzzle
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1098 题目中文是这样的: 伊格内修斯在数学上很差,他遇到了一个难题,所以他别无选择,只能上诉埃迪. 这 ...
- 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)
Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...
- HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法
题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...
- ACM: HDU 1028 Ignatius and the Princess III-DP
HDU 1028 Ignatius and the Princess III Time Limit:1000MS Memory Limit:32768KB 64bit IO Form ...
- hdu 1028 Ignatius and the Princess III 简单dp
题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...
- HDU 1029 Ignatius and the Princess IV --- 水题
HDU 1029 题目大意:给定数字n(n <= 999999 且n为奇数 )以及n个数,找出至少出现(n+1)/2次的数 解题思路:n个数遍历过去,可以用一个map(也可以用数组)记录每个数出 ...
随机推荐
- Linux 常用命令解析和Bash Shell使用示例脚本演示
摘要 Linux命令是基于文本格式输入输出的一种程序,依照Unix哲学中强调的程序功能简单,输入宽松,输出严谨,各种程序组合能够具有更强大的功能,而具有这样的灵活性的主要原因是Linux规定程序 ...
- 跟我extjs5(03--在项目过程中加载文件)
跟我extjs5(03--在项目过程中加载文件) 上一节中用sencha工具自己主动创建了一个项目.而且能够在浏览器中查看. 如今我们来看看js类载入过程. 例如以下图所看到的: watermark/ ...
- BZOJ 2431 HAOI2009 在列的数目的顺序相反 递归
标题效果:乞讨1~n有都布置在物种的数目相反的顺序k计划数 订购f[i][j]对于前者i原子的反向排列的数j计划数 因此,我们将第一i插入的数1~i-1该装置 能生产0~i-1反向对 再就是 f[i] ...
- 我学的是设计模式的视频教程——命令模式vs策略模式,唠嗑
课程视频 命令模式vs策略模式 唠嗑 课程笔记 课程笔记 课程代码 课程代码 新课程火热报名中 课程介绍 版权声明:本文博主原创文章,博客,未经同意不得转载.
- php+sqlite cms
1 phpSQLiteCMS 最新版本 phpSQLiteCMS 2.0.4 http://phpsqlitecms.net/ 2 taoCMS 最新版本 [2.5Beta5下载地址] 需要php ...
- SQLSERVER中的log block校验(译)
原文:SQLSERVER中的log block校验(译) SQLSERVER中的log block校验(译) 来自:http://sankarreddy.com/2010/03/transaction ...
- 设计模式-----观察者模式(Obsever)
它定义了对象之间一对多的依赖关系.因此,.当一个对象的状态变化,对吸毒成瘾者,他将收到通知和更新自己主动. 观察者模式的组成: 抽象主题角色:把全部对观察者对象的引用保存在一个集合中.抽象主题提供一个 ...
- PL/SQL Developer ORA-12154: TNS: 无法解析指定的连接标识符
底: 在这台机器(Win7 64位置 最后)设备Oracle 11g的client(已安装32位ORACLEclient.假设安装64位ORACLEclient的时候,在CMD命令中 ...
- php中国的垃圾问题
header这条线加,这是解决中国乱码的问题. 版权声明:本文博主原创文章,博客,未经同意不得转载.
- Spring 的@Scheduled注解实现定时任务运行和调度
Spring 的@Scheduled注解实现定时任务运行和调度 首先要配置我们的spring.xml --- 即spring的主配置文件(有的项目中叫做applicationContext.xm ...