Polycarp's problems
2 seconds
256 megabytes
standard input
standard output
Polycarp is an experienced participant in Codehorses programming contests. Now he wants to become a problemsetter.
He sent to the coordinator a set of n problems. Each problem has it's quality, the quality of the i-th problem is ai (ai can be positive, negative or equal to zero). The problems are ordered by expected difficulty, but the difficulty is not related to the quality in any way. The easiest problem has index 1, the hardest problem has index n.
The coordinator's mood is equal to q now. After reading a problem, the mood changes by it's quality. It means that after the coordinator reads a problem with quality b, the value b is added to his mood. The coordinator always reads problems one by one from the easiest to the hardest, it's impossible to change the order of the problems.
If after reading some problem the coordinator's mood becomes negative, he immediately stops reading and rejects the problemset.
Polycarp wants to remove the minimum number of problems from his problemset to make the coordinator's mood non-negative at any moment of time. Polycarp is not sure about the current coordinator's mood, but he has m guesses "the current coordinator's moodq = bi".
For each of m guesses, find the minimum number of problems Polycarp needs to remove so that the coordinator's mood will always be greater or equal to 0 while he reads problems from the easiest of the remaining problems to the hardest.
The first line of input contains two integers n and m (1 ≤ n ≤ 750, 1 ≤ m ≤ 200 000) — the number of problems in the problemset and the number of guesses about the current coordinator's mood.
The second line of input contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the qualities of the problems in order of increasing difficulty.
The third line of input contains m integers b1, b2, ..., bm (0 ≤ bi ≤ 1015) — the guesses of the current coordinator's mood q.
Print m lines, in i-th line print single integer — the answer to the problem with q = bi.
6 3
8 -5 -4 1 -7 4
0 7 3
2
0
1
分析:dp,考虑从后往前转移;
dp[i][j]表示从后往前i个数去掉了j个数时所需的最小初始b值;
dp1[i]表示若去掉i个数,则所需最小的初始b值;
转移方程为:
dp[i][j]=min(dp[i][j],max(0LL,dp[i-1][j]-a[i]));//当前数保留;
dp[i][j+1]=min(dp[i][j+1],dp[i-1][j]);//当前数删除;
最后二分处理询问;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3fLL
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<ll,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
const int maxn=1e3+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,a[maxn],ans;
ll dp[maxn][maxn],dp1[maxn];
int main()
{
int i,j;
scanf("%d%d",&n,&m);
rep(i,,n)scanf("%d",&a[i]);
memset(dp,llinf,sizeof dp);
dp[][]=0LL;
for(i=n;i>=;i--)
{
for(j=;j<n-i+;j++)
{
dp[n-i+][j]=min(dp[n-i+][j],max(0LL,dp[n-i][j]-a[i]));
dp[n-i+][j+]=min(dp[n-i+][j+],dp[n-i][j]);
}
}
dp1[n]=;
for(i=n-;i>=;i--)dp1[i]=max(dp1[i+],dp[n][i]);
rep(i,,m)
{
ll op;
scanf("%lld",&op);
ans=lower_bound(dp1,dp1+n+,op,greater<ll>())-dp1;
printf("%d\n",ans);
}
//system("Pause");
return ;
}
Polycarp's problems的更多相关文章
- codeforces 727F. Polycarp's problems
题目链接:http://codeforces.com/contest/727/problem/F 题目大意:有n个问题,每个问题有一个价值ai,一开始的心情值为q,每当读到一个问题时,心情值将会加上该 ...
- Codeforces 727 F. Polycarp's problems
Description 有一个长度为 \(n\) 有正负权值的序列,你一开始有一个值,每次到一个权值就加上,最少需要删掉多少数值才能到序列末尾.\(n \leqslant 750,m \leqslan ...
- CF727F [Polycarp's problems] & [EX_Polycarp's problems]
原题题意 给出长度为n的有序数组,m次询问,每次给出一个正整数x.你要删除数组中最少的元素,使得数组中的前缀和+x都为非负整数.允许离线,n≤750,m≤200,000. 原题思路 首先注意到,x能成 ...
- CF 1006B Polycarp's Practice【贪心】
Polycarp is practicing his problem solving skill. He has a list of n problems with difficulties a1,a ...
- Unity性能优化(2)-官方教程Diagnosing performance problems using the Profiler window翻译
本文是Unity官方教程,性能优化系列的第二篇<Diagnosing performance problems using the Profiler window>的简单翻译. 相关文章: ...
- MS SQL错误:SQL Server failed with error code 0xc0000000 to spawn a thread to process a new login or connection. Check the SQL Server error log and the Windows event logs for information about possible related problems
早晨宁波那边的IT人员打电话告知数据库无法访问了.其实我在早晨也发现Ignite监控下的宁波的数据库服务器出现了异常,但是当时正在检查查看其它服务器发过来的各类邮件,还没等到我去确认具体情 ...
- Problems about trees
Problems (1) 给一棵带边权的树,求遍历这棵树(每个节点至少经过一次)再回到起点的最短路程. 答案是显然的:边权之和的两倍. (2)给一棵带边权的树,求遍历这棵树(每个节点至少经过一次)的最 ...
- cf723c Polycarp at the Radio
Polycarp is a music editor at the radio station. He received a playlist for tomorrow, that can be re ...
- Problems with MMM for mysql(译文)
Problems with mmm for mysql posted in MySQL by shlomi 原文:http://code.openark.org/blog/mysql/problems ...
随机推荐
- 关于string的对象引用
什么都不说了, 一切都在代码里: Console.WriteLine(object.ReferenceEquals(c5, c4)); //False ...
- GetLastError() 返回值含义
[0]-操作成功完成.[1]-功能错误.[2]-系统找不到指定的文件.[3]-系统找不到指定的路径.[4]-系统无法打开文件.[5]-拒绝访问.[6]-句柄无效.[7]-存储控制块被损坏.[8]-存储 ...
- weblogic一些基本概念
<收藏过来的----------http://www.cnblogs.com/cocowool/archive/2012/04/01/2428861.html> WebLogic中的一些基 ...
- discuz论坛小记
客服要改sitemap.php要展示最新的回帖内容,但是我不懂discuz,对数据库和php不是特别熟练,PHP后台开发的程序猿太忙了!!~没办法硬着头皮上~ 哎呀数据库对应的是哪个啊?让我看看con ...
- 多工段查询存放到DataTable到List<DataTable>集合在C#里面做汇总
private void btnQuery_Click(object sender, EventArgs e) { if (cboxFactory.Text=="") { Mess ...
- chrome浏览器debug
Chrome浏览器审查元素 1.Elements标签页 Elements标签页的左侧就是对页面HTML结构的查看与编辑,你可以直接在某个元素上双击修改元素的属性. 1.Edit as HTML直接对元 ...
- Redis简介三
目录 一.Key 二.String 三.Hash 四.List 五.Set 六.SortedSet 七.Pub/Sub 八.Transaction 九.Script 十.Connection 十一.S ...
- ZUFE OJ 2289 God Wang II
Description 这个世界太无聊了,于是God Wang想出了新的运算符号$,对于两个数x,y来说x$y的值等于x和y各个位置上的数字乘积之和,没有的位按0来算 比如说123$321=1*3+2 ...
- C语言介绍
以下东东转自百度百科 C语言是一种计算机程序设计语言,它既具有高级语言的特点,又具有汇编语言的特点.它由美国贝尔实验室的Dennis M. Ritchie于1972年推出,1978年后,C语言已先后被 ...
- 《Windows驱动开发技术详解》之定时器
I/O定时器 I/O定时器是DDK提供的一种定时器.它每个1s钟系统会调用一次I/O定时器例程.I/O定时器例程运行在DISPATCH_LEVEL级别,因此在这个例程中不能使用分页内存,否则会引起页故 ...