Carmichael Numbers - PC110702
欢迎访问我的新博客:http://www.milkcu.com/blog/
原文地址:http://www.milkcu.com/blog/archives/uva10006.html
原创:Carmichael Numbers - PC110702
作者:MilkCu
题目描述
Carmichael Numbers |
An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field in computer science, and that life would not matter at all without cryptography.
 Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. Some of the cryptographic algorithms he is implementing make use of big prime numbers. However, checking if a big number is prime is not so easy. An exhaustive
approach can require the division of the number by all the prime numbers smaller or equal than its square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.
However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.
Let a be a random number between 2 and n - 1 (being n the number whose primality we are testing). Then, n is probably prime if the following equation holds:
If a number passes the Fermat test several times then it is prime with a high probability.
Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers.
In this problem you are asked to write a program to test if a given number is a Carmichael number. Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella.
As a side note, we need to mention that, according to Alvaro, the main advantage of encrypted paella over conventional paella is that nobody but you knows what you are eating.
Input
The input will consist of a series of lines, each containing a small positive number n ( 2
< n < 65000). A number n = 0 will
mark the end of the input, and must not be processed.
Output
For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.
Sample Input
1729
17
561
1109
431
0
Sample Output
The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.
Miguel Revilla
2000-08-21
解题思路
Carmichael数肯定是个合数,且对于所有a都满足a^n mod n = a。
根据题目,按部就班的做。
在对乘方求模的时候可以使用递归的方法,减少计算时间:
(a mod n) ^ p mod n = ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p % 2) mod n) mod n
注意不要超过整型范围,增加取模次数,使用long long类型。
不超过100000的16个卡迈克数如下:
561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,62745,63973,75361。
代码实现
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int isPri(int n) {
for(int i = 2; i <= sqrt(n); i++) {
if(n % i == 0) {
return 0;
}
}
return 1;
}
long long powmod(int a, int p, int n) {
if(p == 1) {
return a % n;
}
if(p == 0) {
return 1 % n;
}
return (powmod(a, p / 2, n) % n) * (powmod(a, p / 2, n) % n) * (powmod(a, p % 2, n) % n) % n;
}
int isCar(int n) {
if(isPri(n)) {
return 0;
}
for(long long a = 2; a < n; a++) {
if(powmod(a, n, n) != a) {
//cout << a << endl;
return 0;
}
}
return 1;
}
int main(void) {
//cout << powmod(747, 1729, 1729) << endl;
while(1) {
int n;
cin >> n;
if(n == 0) {
break;
}
if(isCar(n)) {
cout << "The number " << n << " is a Carmichael number." << endl;
} else {
cout << n << " is normal." << endl;
}
}
return 0;
}
(全文完)
本文地址:http://blog.csdn.net/milkcu/article/details/23553323
Carmichael Numbers - PC110702的更多相关文章
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- UVA10006 - Carmichael Numbers
题目链接:UVA10006 本来想直接打素数表,然后根据素数表来判断,结果一直超时,后来把素数表去掉,再在for循环中加判断才勉强过了. Some numbers that are not prime ...
- UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂)
UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂) 题目链接 题目大意:假设有一个合数.然后它满足随意大于1小于n的整数a, 满足a^n%n = a;这种合数叫做Ca ...
- 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)
-->Carmichael Numbers Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...
- Uva 10006 Carmichael Numbers (快速幂)
题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...
- Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表
#include <cstdio> #include <iostream> #include <algorithm> #include <cmath> ...
- Carmichael Numbers (快速幂)
当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加 ...
- Mathematics:Pseudoprime numbers(POJ 3641)
强伪素数 题目大意:利用费马定理找出强伪素数(就是本身是合数,但是满足费马定理的那些Carmichael Numbers) 很简单的一题,连费马小定理都不用要,不过就是要用暴力判断素数的方法先确定是 ...
随机推荐
- 以正确的方式开源 Python 项目(转)
大多数Python开发者至少都写过一个像工具.脚本.库或框架等对其他人也有用的工具.我写这篇文章的目的是让现有Python代码的开源过程尽可能清晰和无痛.我不是简单的指——“创建一个GitHub库,提 ...
- SSIS从理论到实战,再到应用
原文:SSIS从理论到实战,再到应用 一,是什么(What?) 1.SSIS是Microsoft SQL Server Integration Services的简称,是生成高性能数据集成解决方案(包 ...
- 使用CNN(convolutional neural nets)关键的一点是检测到的面部教程(四):学习率,学习潜能,dropout
第七部分 让 学习率 和 学习潜能 随时间的变化 光训练就花了一个小时的时间.等结果并非一个令人心情愉快的事情.这一部分.我们将讨论将两个技巧结合让网络训练的更快! 直觉上的解决的方法是,開始训练时取 ...
- jQuery - 基于serializeArray的serializeObject
将表单序列化成JSON对象,注意不管是自实现的serializeObject()还是原生的serializeArray(),所要序列化的控件都必须要有name,而不是id jQuery.prototy ...
- 导入三方包,出现ClassNotFoundException
在项目中须要引用settings模块里面的某个活动.在eclipse中导入settins.jar包之后,使用例如以下方式启动: Intent intent = new Intent(); intent ...
- auto tool: make -2014-1210-0001
/* *Author : DavidLin *Date : 2014-12-10pm *Email : linpeng1577@163.com or linpeng1577@gmail.com *wo ...
- Net下无敌的ORM
Dapper ORM 用法—Net下无敌的ORM http://www.renfb.com/blog/2011/Article/335 假如你喜欢原生的Sql语句,又喜欢ORM的简单,那你一定会喜欢上 ...
- javascript继承—继承的实现原理(1)
原文:javascript继承-继承的实现原理(1) 打算针对js的继承写一系列文章,详细的分析js里继承原理,实现方式,各种继承方式的优缺点,以及最优继承方案,还有多继承的问题等…. 面向对象的编程 ...
- pinyin4j新手教程
Pinyin4j新手教程 pinyin4j是一个支持将简体和繁体中文转换到成拼音的Java开源类库,作者是Li Min (xmlerlimin@gmail.com). 下面是一些详细的介绍和使用方式. ...
- ArcGIS API for Silverlight 编辑Geometry
概述 ArcMap的编辑功能是非常强大的,ArcEngine编写的CS程序也可以用到ArcMap中提供的编辑功能,那么ArcGIS API forSilverlight针对Geometry的编辑提供了 ...