欢迎访问我的新博客:http://www.milkcu.com/blog/

原文地址:http://www.milkcu.com/blog/archives/uva10006.html

原创:Carmichael Numbers - PC110702

作者:MilkCu

题目描述

 Carmichael Numbers 

An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field in computer science, and that life would not matter at all without cryptography.
 Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. Some of the cryptographic algorithms he is implementing make use of big prime numbers. However, checking if a big number is prime is not so easy. An exhaustive
approach can require the division of the number by all the prime numbers smaller or equal than its square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.

However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.

Let a be a random number between 2 and n - 1 (being n the number whose primality we are testing). Then, n is probably prime if the following equation holds:

If a number passes the Fermat test several times then it is prime with a high probability.

Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers.

In this problem you are asked to write a program to test if a given number is a Carmichael number. Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella.
As a side note, we need to mention that, according to Alvaro, the main advantage of encrypted paella over conventional paella is that nobody but you knows what you are eating.

Input

The input will consist of a series of lines, each containing a small positive number n ( 2
< n < 65000). A number n = 0 will
mark the end of the input, and must not be processed.

Output

For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.

Sample Input

1729
17
561
1109
431
0

Sample Output

The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.

Miguel Revilla 

2000-08-21

解题思路

Carmichael数肯定是个合数,且对于所有a都满足a^n mod n = a。



根据题目,按部就班的做。



在对乘方求模的时候可以使用递归的方法,减少计算时间:

(a mod n) ^ p mod n = ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p % 2) mod n) mod n



注意不要超过整型范围,增加取模次数,使用long long类型。



不超过100000的16个卡迈克数如下:

561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,62745,63973,75361。

代码实现

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int isPri(int n) {
for(int i = 2; i <= sqrt(n); i++) {
if(n % i == 0) {
return 0;
}
}
return 1;
}
long long powmod(int a, int p, int n) {
if(p == 1) {
return a % n;
}
if(p == 0) {
return 1 % n;
}
return (powmod(a, p / 2, n) % n) * (powmod(a, p / 2, n) % n) * (powmod(a, p % 2, n) % n) % n;
}
int isCar(int n) {
if(isPri(n)) {
return 0;
}
for(long long a = 2; a < n; a++) {
if(powmod(a, n, n) != a) {
//cout << a << endl;
return 0;
}
}
return 1;
}
int main(void) {
//cout << powmod(747, 1729, 1729) << endl;
while(1) {
int n;
cin >> n;
if(n == 0) {
break;
}
if(isCar(n)) {
cout << "The number " << n << " is a Carmichael number." << endl;
} else {
cout << n << " is normal." << endl;
}
}
return 0;
}

(全文完)

本文地址:http://blog.csdn.net/milkcu/article/details/23553323

Carmichael Numbers - PC110702的更多相关文章

  1. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  2. UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)

      Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people e ...

  3. UVA10006 - Carmichael Numbers

    题目链接:UVA10006 本来想直接打素数表,然后根据素数表来判断,结果一直超时,后来把素数表去掉,再在for循环中加判断才勉强过了. Some numbers that are not prime ...

  4. UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂)

    UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂) 题目链接 题目大意:假设有一个合数.然后它满足随意大于1小于n的整数a, 满足a^n%n = a;这种合数叫做Ca ...

  5. 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)

    -->Carmichael Numbers  Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...

  6. Uva 10006 Carmichael Numbers (快速幂)

    题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...

  7. Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表

    #include <cstdio> #include <iostream> #include <algorithm> #include <cmath> ...

  8. Carmichael Numbers (快速幂)

       当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加 ...

  9. Mathematics:Pseudoprime numbers(POJ 3641)

     强伪素数 题目大意:利用费马定理找出强伪素数(就是本身是合数,但是满足费马定理的那些Carmichael Numbers) 很简单的一题,连费马小定理都不用要,不过就是要用暴力判断素数的方法先确定是 ...

随机推荐

  1. 如何让格斗游戏的横版过关(2) Cocos2d-x 2.0.4

    在第一章<如何使横版格戏>基础上.添加角色运动.碰撞.敌人.AI和音乐音效,原文<How To Make A Side-Scrolling Beat 'Em Up Game Like ...

  2. 网络资源(2) - Maven视频

    2014_08_23 http://v.youku.com/v_show/id_XNDE2NzM0Nzk2.html Maven最佳实践,公司真实环境实践-私服最佳实践 2014_08_24 http ...

  3. CSDN Markdown简明教程4-UML画画

    0.文件夹 文件夹 前言 序列图 1 序列图演示样例 2 序列图语法 流程图 1 流程图演示样例 2 流程图语法 节点定义 节点连接 Gravizo 声明 1. 前言 Markdown是一种轻量级的标 ...

  4. String.Split()功能

    我们在过去的教训 String.Join功能(http://blog.csdn.net/zhvsby/archive/2008/11/28/3404704.aspx).当中用到了String.SPli ...

  5. NYNU_省赛选拔题(8)

    题目描述 一天萌萌哒孟孟学长去博物馆参观,他想看到更多的东西.博物馆可以表示为N × M细胞的一个矩形区域. “.”表示为路,“*”表示为墙壁,每个墙壁上面都挂有美丽的画卷.孟孟学长可以看到与他所在位 ...

  6. [Error]EOL while scanning string literal

    有一个经常性的工作项目.需要一天的一些表数据到外部接口,但最近总是异常.今天检查的原因. 第一本地和测试环境中测试程序是没有问题,有网络环境只会在日志中抛出一个异常.产生主要的例外是推定异常数据. , ...

  7. C# 反射技术应用

    反射(Reflection)是.NET中的重要机制,通过放射,可以在运行时获得.NET中每一个类型(包括类.结构.委托.接口和枚举等)的成员,包括方法.属性.事件,以及构造函数等.还可以获得每个成员的 ...

  8. crawler_java_数据平台结构

    大数据生态架构

  9. oracle_修改连接数

    修改Oracle最大连接数 1.查询Oracle会话的方法   select * from v$session 2.修改Oracle最大连接数的方法      a.以sysdba身份登陆PL/SQL ...

  10. SQL Server AlwaysON 同步模式的疑似陷阱

    原文:SQL Server AlwaysON 同步模式的疑似陷阱 SQL Server 2012 推出的最重要的功能之一Alwayson,是一个集之前Cluster和Mirror于一体的新功能,即解决 ...