注:本系列来自于图像处理课程实验,用Matlab实现最主要的图像处理算法

图像点处理是图像处理系列的基础,主要用于让我们熟悉Matlab图像处理的编程环境。灰度线性变换和灰度拉伸是对像素灰度值的变换操作,直方图是对像素灰度值的统计,直方图均衡是对灰度值分布的变换。


1.灰度线性变换

(1)线性变换函数

原图向灰度值为g。通过线性函数f(x)=kx+b转换为f(g)得到灰度的线性变换。

(2)代码实现

Matlab中支持矩阵作为函数參数传入。定义一个线性转换函数,利用Matlab矩阵操作,用一行代码就可以对整个二维图像矩阵中所有点的灰度进行线性变换:

function [ new ] = LinearTransformFunc( original, k, d )
new = original * k + d;
end

当中k和d是线性函数的斜率和截距。由用户输入指定,用户输入为空时赋予默认值:

  • input函数获取用户输入
  • isempty推断用户输入是否为空:
k = input('please input the slope(k) of grayscale linear transformation function:\n');

b = input('please input the intercept(b) of grayscale linear transformation function:\n');

if isempty(k)
k = 1;
end if isempty(b)
b = 0;
end

变换图像名也能够由用户input指定。默觉得lena图:

  • imread读出图片。返回值第一个是我们须要的灰度图(二维矩阵)
  • 对变换后的灰度图,用imshowfigure中显示图像
name = input('please input the name of image:\n');

if isempty(name)
name = 'lena';
end original = imread(strcat('../exp/', name, '.bmp')); transformed = LinearTransformFunc(original, k, b); figure
imshow(transformed)

在这个实验的操作中说明怎样读入、显示,后面实验不在赘述

(3)执行结果

利用subplot作图,把原图和线性变换后的图像对照,线性变换函数是f(x)=2x+10:

左图是原图像,右图是线性变换后图像。


2.灰度拉伸变换

(1)灰度拉伸变换和线性分段函数

灰度拉伸变换和线性变换类似,仅仅是是将灰度值做分段线性变换。分段函数控制点(x1,y1)(x2,y2)

(2)代码实现

整个程序用户接口和流程和线性变换相同,仅仅是须要用户输入两个控制点,并传入下面的分段线性变换函数:

function [ new ] = StretchFunc(original, x1, y1, x2, y2 )
new = original; w = size(new, 1);
h = size(new, 2); k1 = y1 / x1; dk1 = (y2 - y1) / (x2 - x1);
dk2 = (255 - y2) / (255 - x2); for i = 1 : w
for j = 1 : h
x = new(i, j);
if x < x1
new(i, j) = k1 * x;
elseif x < x2
new(i, j) = dk1 * (x - x1) + y1;
else
new(i, j) = dk2 * (x - x2) + y2;
end
end
end
end

这里不可避免要使用到for循环。

(3)执行结果

相同对照原图。默认控制点选取(-100,20)和(100,180)


3.灰度直方图

(1)灰度直方图

灰度直方图就是对图像中每一个像素点的灰度值出现的频数或频率(归一化)的统计,那么我们直接遍历整个图像统计出每一个灰度值出现次数再做对应处理就可以。

(2)代码实现

首先须要遍历统计灰度,我在GrayScaleStatistic函数里完毕统计,区间[low, high]是目标灰度统计区间,默认是[0,255]:

function [ result ] = GrayScaleStatistic( original, low, high )

    w = size(original, 1);
h = size(original, 2);
result = zeros(1, high - low + 1); for i = 1 : w
for j = 1 : h
g = original(i, j);
if g >= low && g <= high
g = g - low + 1;
result(g) = result(g) + 1;
end
end
end end

然后就使用Matlab条形图作图函数bar完毕灰度图作图:

y = GrayScaleStatistic(original, low, high);
x = low : 1 : high;
bar(x, y)

对于题目要求的可输入灰度区间显示,我们要么不统计区间[low, high]以外的灰度值。要么直接所有统计但在作图时用xlim函数限制x轴取值范围:

xlim([low, high])

(3)执行结果

对照Matlab标准直方图作图函数histogram,结果例如以下:

也能够通过input输入限定区间。这里是[20,150]区间的灰度直方图:

左右对照,效果一致。


4.直方图均衡化

(1)直方图均衡算法

直方图均衡主要用于增强动态范围偏小的图像的反差,其基本思想是把原始图像的直方图变换为均匀分布,从而增强灰度值的动态范围,以达到增强对照度的效果。

直方图均衡化算法例如以下

  1. 归一化灰度频数直方图。得到频率直方图sk
  2. sk计算频率累计直方图tk
  3. tk做取整扩展:tk = int[(L - 1) * tk + 0.5]。将直方图灰度映射尽量满整个灰度取值空间L
  4. 确定变换映射关系k->tk
  5. 依据映射关系变换图像灰度值

(2)代码实现

在脚本中调用Normalize函数直接得到均衡化后的图像。再统计直方图并显示。

Normalize函数例如以下:

function [ new ] = Normalize( original, v )

    s = sum(v);
tv = v / s; l = length(v); for i = 2 : l
tv(i) = tv(i) + tv(i - 1);
end tk = uint8(255 * tv + 0.5); w = size(original, 1);
h = size(original, 2); new = original; for i = 1 : w
for j = 1 : h
new(i, j) = tk(original(i, j) + 1);
end
end end

说明:

  • tv先计算频率直方图,再通过累加得到累计直方图
  • tk依据累计直方图计算新的灰度映射关系
  • 最后遍历整个图像把原灰度转换成均衡化后的灰度值

当中有一下几点须要注意,也是Matlab图操作的注意点:

  • Matlab默认类型是double。对灰度值赋值时注意强制转换类型,保证类型一致
  • Matlab坐标起始从1開始。而灰度值是uint8的0-255。因此映射数组tk把原始灰度映射到变换后灰度时须要加1

(3)结果展示

pout.bmp是一副灰度分布较为集中的图像,因此图像对照度不高,显示较为模糊。使用直方图均值化,分散灰度分布从而增强对照度:

通过对照均衡先后直方图分布,能够发现:

  • 灰度分布不能全然平均化,是因为均值化算法中运用了取整运算,而不是离散值的全然均衡化
  • 得到的均衡化后直方图走势没有发生变化。因此图像没有失真

Matlab图像处理系列1———线性变换和直方图均衡的更多相关文章

  1. Matlab图像处理系列2———空间域平滑滤波器

    注:本系列来自于图像处理课程实验,用Matlab实现最主要的图像处理算法 本文章是Matlab图像处理系列的第二篇文章.介绍了空间域图像处理最主要的概念----模版和滤波器,给出了均值滤波起和中值滤波 ...

  2. Matlab图像处理系列4———图像傅立叶变换与反变换

    注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...

  3. Matlab图像处理系列4———傅立叶变换和反变换的图像

    注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...

  4. matlab图像处理

    matlab图像处理 转自:http://www.cnblogs.com/lovebay/p/5094146.html 1. 图像和图像数据 缺省情况下,MATLAB将图像中的数据存储为双精度类型(d ...

  5. [转载]matlab图像处理为什么要归一化和如何归一化

    matlab图像处理为什么要归一化和如何归一化,一.为什么归一化1.   基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响.也就是转换成唯一的标准形式以抵抗仿射变 ...

  6. Atitit MATLAB 图像处理 经典书籍attilax总结

    Atitit MATLAB 图像处理 经典书籍attilax总结 1.1. MATLAB数字图像处理1 1.2. <MATLAB实用教程(第二版)>((美)穆尔 著)[简介_书评_在线阅读 ...

  7. Atitit MATLAB 图像处理attilax总结

    Atitit MATLAB 图像处理attilax总结 1.1. 下载 Matlab7.0官方下载_Matlab2012 v7.0 官方简体中文版-办公软件-系统大全.html1 1.2. Matla ...

  8. Matlab图像处理函数:regionprops

    本篇文章为转载,仅为方便学术讨论所用,不用于商业用途.由于时间较久,原作者以及原始链接暂时无法找到,如有侵权以及其他任何事宜欢迎跟我联系,如有侵扰,在此提前表示歉意.----------------- ...

  9. MATLAB图像处理函数汇总(二)

    60.imnoise 功能:增加图像的渲染效果. 语法: J = imnoise(I,type) J = imnoise(I,type,parameters) 举例 I = imread('eight ...

随机推荐

  1. 安装基于XenServer的DevStack

    Openstack默认的hypervisior是基于KVM的,可以修改nova-compute.conf的libvirt_type改成使用其他,网上可以搜到个别文章 但是Openstack官方文档却说 ...

  2. C#根据域名查询IP(CMD命令参数输入或者启动程序后再输入查询)

    有时因为需要,希望知道域名的IP,那用C#怎么实现呢?以下是实现代码 using System; using System.Collections.Generic; using System.Linq ...

  3. redhat6.0 安装ORACLE11GR2过程记录

    vawaretools安装 我的是8.0vm 1,vm=>install vmtools 2,会在redhat里出现一个虚拟光驱图标. 3,复制里面的文件到root目录下. 4,解压缩文件 ta ...

  4. ExecuteReader: CommandText 属性尚未初始化

    没有对sqlcommand对象的commandtext属性赋值说白了就是没写SQL语句 -.- 无语死了.

  5. PyDev下PyQt 的尝试

    刚刚装完PyDev ,试了下之前写的调用PyQt的下代码,发现运行出错:搜索只还需在System PYHONPATH下 添加PyQt的路径,步骤如下: eclipse--window--Prefere ...

  6. 【转】windows 7系统安装与配置Tomcat服务器环境

    原文链接: windows 7系统安装与配置Tomcat服务器环境 工具/原料 jdk-8u51-windows-x64(我的系统是64位系统,32位的请选x86下载)下载地址:http://www. ...

  7. 仿OpenStack开发云计算管理软件

    仿OpenStack开发云计算管理软件 使用Python语言开发一套类似OpenStack的云计算管理平台LouCloud,具备基本的用户,服务器,镜像与 虚拟机管理功能,学习IaaS,虚拟化,Lib ...

  8. 第十一章 认识与学习BASH

    系统支持的shell在   /etc/shells里面 Bash Shell 的功能: 1.命令修补能力(histroy) 2.命令与档案补全功能 3.命令别名设定功能 4.工作前景背景控制 5.支持 ...

  9. PHP - 计算执行程序耗时

    效果: 首先在includes文件夹下编写,global.func.php函数库: <?php /* * Version:1.0 * CreateTime:2015年11月11日 * Autho ...

  10. 集合简单总结 ArrayList、List、Hashtable、Dictionary

      ============================ 集合综述 ============================== 1.什么是泛型: 泛型就是限制了操作类型,意思如下:       ...