文章先由stackoverflow上面的一个问题引起吧,如果使用如下的代码:

@makebold
@makeitalic
def say():
return "Hello"

打印出如下的输出:

<b><i>Hello<i></b>

你会怎么做?最后给出的答案是:

def makebold(fn):
def wrapped():
return "<b>" + fn() + "</b>"
return wrapped def makeitalic(fn):
def wrapped():
return "<i>" + fn() + "</i>"
return wrapped @makebold
@makeitalic
def hello():
return "hello world" print hello() ## 返回 <b><i>hello world</i></b>

现在我们来看看如何从一些最基础的方式来理解Python的装饰器。英文讨论参考Here

装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日 志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的 讲,装饰器的作用就是为已经存在的对象添加额外的功能。

1.1. 需求是怎么来的?

装饰器的定义很是抽象,我们来看一个小例子。

def foo():
print 'in foo()'
foo()

这是一个很无聊的函数没错。但是突然有一个更无聊的人,我们称呼他为B君,说我想看看执行这个函数用了多长时间,好吧,那么我们可以这样做:

import time
def foo():
start = time.clock()
print 'in foo()'
end = time.clock()
print 'used:', end - start foo()

很好,功能看起来无懈可击。可是蛋疼的B君此刻突然不想看这个函数了,他对另一个叫foo2的函数产生了更浓厚的兴趣。

怎么办呢?如果把以上新增加的代码复制到foo2里,这就犯了大忌了~复制什么的难道不是最讨厌了么!而且,如果B君继续看了其他的函数呢?

1.2. 以不变应万变,是变也

还记得吗,函数在Python中是一等公民,那么我们可以考虑重新定义一个函数timeit,将foo的引用传递给他,然后在timeit中调用foo并进行计时,这样,我们就达到了不改动foo定义的目的,而且,不论B君看了多少个函数,我们都不用去修改函数定义了!

import time

def foo():
print 'in foo()' def timeit(func):
start = time.clock()
func()
end =time.clock()
print 'used:', end - start timeit(foo)

看起来逻辑上并没有问题,一切都很美好并且运作正常!……等等,我们似乎修改了调用部分的代码。原本我们是这样调用的:foo(),修改以后变成 了:timeit(foo)。这样的话,如果foo在N处都被调用了,你就不得不去修改这N处的代码。或者更极端的,考虑其中某处调用的代码无法修改这个 情况,比如:这个函数是你交给别人使用的。

1.3. 最大限度地少改动!

既然如此,我们就来想想办法不修改调用的代码;如果不修改调用代码,也就意味着调用foo()需要产生调用timeit(foo)的效果。我们可以 想到将timeit赋值给foo,但是timeit似乎带有一个参数……想办法把参数统一吧!如果timeit(foo)不是直接产生调用效果,而是返回 一个与foo参数列表一致的函数的话……就很好办了,将timeit(foo)的返回值赋值给foo,然后,调用foo()的代码完全不用修改!

#-*- coding: UTF-8 -*-
import time def foo():
print 'in foo()' # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法
def timeit(func): # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装
def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start # 将包装后的函数返回
return wrapper foo = timeit(foo)
foo()

这样,一个简易的计时器就做好了!我们只需要在定义foo以后调用foo之前,加上foo = timeit(foo),就可以达到计时的目的,这也就是装饰器的概念,看起来像是foo被timeit装饰了。在在这个例子中,函数进入和退出时需要计 时,这被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。与传统编程习惯的从上往下执行方式相比较而言,像是在函数执行的流程中横向地插入了一段逻辑。在特定的业务领域里,能减少大量 重复代码。面向切面编程还有相当多的术语,这里就不多做介绍,感兴趣的话可以去找找相关的资料。

这个例子仅用于演示,并没有考虑foo带有参数和有返回值的情况,完善它的重任就交给你了 :)

上面这段代码看起来似乎已经不能再精简了,Python于是提供了一个语法糖来降低字符输入量。

import time

def timeit(func):
def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start
return wrapper @timeit
def foo():
print 'in foo()' foo()

重点关注第11行的@timeit,在定义上加上这一行与另外写foo = timeit(foo)完全等价,千万不要以为@有另外的魔力。除了字符输入少了一些,还有一个额外的好处:这样看上去更有装饰器的感觉。

-------------------

要理解python的装饰器,我们首先必须明白在Python中函数也是被视为对象。这一点很重要。先看一个例子:

def shout(word="yes") :
return word.capitalize()+" !" print shout()
# 输出 : 'Yes !' # 作为一个对象,你可以把函数赋给任何其他对象变量 scream = shout # 注意我们没有使用圆括号,因为我们不是在调用函数
# 我们把函数shout赋给scream,也就是说你可以通过scream调用shout print scream()
# 输出 : 'Yes !' # 还有,你可以删除旧的名字shout,但是你仍然可以通过scream来访问该函数 del shout
try :
print shout()
except NameError, e :
print e
#输出 : "name 'shout' is not defined" print scream()
# 输出 : 'Yes !'

我们暂且把这个话题放旁边,我们先看看python另外一个很有意思的属性:可以在函数中定义函数:

def talk() :

    # 你可以在talk中定义另外一个函数
def whisper(word="yes") :
return word.lower()+"..."; # ... 并且立马使用它 print whisper() # 你每次调用'talk',定义在talk里面的whisper同样也会被调用
talk()
# 输出 :
# yes... # 但是"whisper" 不会单独存在: try :
print whisper()
except NameError, e :
print e
#输出 : "name 'whisper' is not defined"*

函数引用

从以上两个例子我们可以得出,函数既然作为一个对象,因此:

1. 其可以被赋给其他变量

2. 其可以被定义在另外一个函数内

这也就是说,函数可以返回一个函数,看下面的例子:

def getTalk(type="shout") :

    # 我们定义另外一个函数
def shout(word="yes") :
return word.capitalize()+" !" def whisper(word="yes") :
return word.lower()+"..."; # 然后我们返回其中一个
if type == "shout" :
# 我们没有使用(),因为我们不是在调用该函数
# 我们是在返回该函数
return shout
else :
return whisper # 然后怎么使用呢 ? # 把该函数赋予某个变量
talk = getTalk() # 这里你可以看到talk其实是一个函数对象:
print talk
#输出 : <function shout at 0xb7ea817c> # 该对象由函数返回的其中一个对象:
print talk() # 或者你可以直接如下调用 :
print getTalk("whisper")()
#输出 : yes...

还有,既然可以返回一个函数,我们可以把它作为参数传递给函数:

def doSomethingBefore(func) :
print "I do something before then I call the function you gave me"
print func() doSomethingBefore(scream)
#输出 :
#I do something before then I call the function you gave me
#Yes !

这里你已经足够能理解装饰器了,其他它可被视为封装器。也就是说,它能够让你在装饰前后执行代码而无须改变函数本身内容。

手工装饰

那么如何进行手动装饰呢?

# 装饰器是一个函数,而其参数为另外一个函数
def my_shiny_new_decorator(a_function_to_decorate) : # 在内部定义了另外一个函数:一个封装器。
# 这个函数将原始函数进行封装,所以你可以在它之前或者之后执行一些代码
def the_wrapper_around_the_original_function() : # 放一些你希望在真正函数执行前的一些代码
print "Before the function runs" # 执行原始函数
a_function_to_decorate() # 放一些你希望在原始函数执行后的一些代码
print "After the function runs" #在此刻,"a_function_to_decrorate"还没有被执行,我们返回了创建的封装函数
#封装器包含了函数以及其前后执行的代码,其已经准备完毕
return the_wrapper_around_the_original_function # 现在想象下,你创建了一个你永远也不远再次接触的函数
def a_stand_alone_function() :
print "I am a stand alone function, don't you dare modify me" a_stand_alone_function()
#输出: I am a stand alone function, don't you dare modify me # 好了,你可以封装它实现行为的扩展。可以简单的把它丢给装饰器
# 装饰器将动态地把它和你要的代码封装起来,并且返回一个新的可用的函数。
a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#输出 :
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

现在你也许要求当每次调用a_stand_alone_function时,实际调用却是 a_stand_alone_function_decorated。实现也很简单,可以用my_shiny_new_decorator来给 a_stand_alone_function重新赋值。

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#输出 :
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs # And guess what, that's EXACTLY what decorators do !

装饰器揭秘

前面的例子,我们可以使用装饰器的语法:

@my_shiny_new_decorator
def another_stand_alone_function() :
print "Leave me alone" another_stand_alone_function()
#输出 :
#Before the function runs
#Leave me alone
#After the function runs

当然你也可以累积装饰:

def bread(func) :
def wrapper() :
print "</''''''\>"
func()
print "<\______/>"
return wrapper def ingredients(func) :
def wrapper() :
print "#tomatoes#"
func()
print "~salad~"
return wrapper def sandwich(food="--ham--") :
print food sandwich()
#输出 : --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs :
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

使用python装饰器语法:

@bread
@ingredients
def sandwich(food="--ham--") :
print food sandwich()
#输出 :
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

装饰器的顺序很重要,需要注意:

@ingredients
@bread
def strange_sandwich(food="--ham--") :
print food strange_sandwich()
#输出 :
##tomatoes#
#</''''''\>
# --ham--
#<\______/>
# ~salad~

最后回答前面提到的问题:

# 装饰器makebold用于转换为粗体
def makebold(fn):
# 结果返回该函数
def wrapper():
# 插入一些执行前后的代码
return "<b>" + fn() + "</b>"
return wrapper # 装饰器makeitalic用于转换为斜体
def makeitalic(fn):
# 结果返回该函数
def wrapper():
# 插入一些执行前后的代码
return "<i>" + fn() + "</i>"
return wrapper @makebold
@makeitalic
def say():
return "hello" print say()
#输出: <b><i>hello</i></b> # 等同于
def say():
return "hello"
say = makebold(makeitalic(say)) print say()
#输出: <b><i>hello</i></b>
内置的装饰器

内置的装饰器有三个,分别是staticmethod、classmethod和property,作用分别是把类中定义的实例方法变成静态方法、 类方法和类属性。由于模块里可以定义函数,所以静态方法和类方法的用处并不是太多,除非你想要完全的面向对象编程。而属性也不是不可或缺的,Java没有 属性也一样活得很滋润。从我个人的Python经验来看,我没有使用过property,使用staticmethod和classmethod的频率也 非常低。

class Rabbit(object):

    def __init__(self, name):
self._name = name @staticmethod
def newRabbit(name):
return Rabbit(name) @classmethod
def newRabbit2(cls):
return Rabbit('') @property
def name(self):
return self._name

这里定义的属性是一个只读属性,如果需要可写,则需要再定义一个setter:

@name.setter
def name(self, name):
self._name = name
functools模块

functools模块提供了两个装饰器。这个模块是Python 2.5后新增的,一般来说大家用的应该都高于这个版本。但我平时的工作环境是2.4 T-T

2.3.1. wraps(wrapped[, assigned][, updated]):
这是一个很有用的装饰器。看过前一篇反射的朋友应该知道,函数是有几个特殊属性比如函数名,在被装饰后,上例中的函数
名foo会变成包装函数的名字wrapper,如果你希望使用反射,可能会导致意外的结果。这个装饰器可以解决这个问题,它能将装饰过的函数的特殊属性保
留。

import time
import functools def timeit(func):
@functools.wraps(func)
def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start
return wrapper @timeit
def foo():
print 'in foo()' foo()
print foo.__name__

首先注意第5行,如果注释这一行,foo.__name__将是'wrapper'。另外相信你也注意到了,这个装饰器竟然带有一个参数。实际上, 他还有另外两个可选的参数,assigned中的属性名将使用赋值的方式替换,而updated中的属性名将使用update的方式合并,你可以通过查看 functools的源代码获得它们的默认值。对于这个装饰器,相当于wrapper = functools.wraps(func)(wrapper)。

2.3.2. total_ordering(cls):
这个装饰器在特定的场合有一定用处,但是它是在Python 2.7后新增的。它的作用是为实现了至少__lt__、__le__、__gt__、__ge__其中一个的类加上其他的比较方法,这是一个类装饰器。如果觉得不好理解,不妨仔细看看这个装饰器的源代码:

 def total_ordering(cls):
54 """Class decorator that fills in missing ordering methods"""
55 convert = {
56 '__lt__': [('__gt__', lambda self, other: other < self),
57 ('__le__', lambda self, other: not other < self),
58 ('__ge__', lambda self, other: not self < other)],
59 '__le__': [('__ge__', lambda self, other: other <= self),
60 ('__lt__', lambda self, other: not other <= self),
61 ('__gt__', lambda self, other: not self <= other)],
62 '__gt__': [('__lt__', lambda self, other: other > self),
63 ('__ge__', lambda self, other: not other > self),
64 ('__le__', lambda self, other: not self > other)],
65 '__ge__': [('__le__', lambda self, other: other >= self),
66 ('__gt__', lambda self, other: not other >= self),
67 ('__lt__', lambda self, other: not self >= other)]
68 }
69 roots = set(dir(cls)) & set(convert)
70 if not roots:
71 raise ValueError('must define at least one ordering operation: < > <= >=')
72 root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__
73 for opname, opfunc in convert[root]:
74 if opname not in roots:
75 opfunc.__name__ = opname
76 opfunc.__doc__ = getattr(int, opname).__doc__
77 setattr(cls, opname, opfunc)
78 return cls

理解Python中的装饰器的更多相关文章

  1. 理解Python中的装饰器//这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档

    转自:http://www.cnblogs.com/rollenholt/archive/2012/05/02/2479833.html 这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档 ...

  2. 深入理解 Python 中的装饰器

    装饰器本质上也是函数,接收函数对象来作为参数,并在装饰器的内部来调用接受的函数对象完成相关的函数调用,也可以这样理解   ,为了方便在几个不同函数调用之前或者完成相关的统一操作,注意是完成统一的操作, ...

  3. 简单说明Python中的装饰器的用法

    简单说明Python中的装饰器的用法 这篇文章主要简单说明了Python中的装饰器的用法,装饰器在Python的进阶学习中非常重要,示例代码基于Python2.x,需要的朋友可以参考下   装饰器对与 ...

  4. 【Python】python中的装饰器——@

    对装饰器本来就一知半解的,今天终于弄清楚了,Python中的装饰器是对装饰者模式的很好运用,简化到骨子里了. python中为什么需要装饰器,看这里:http://www.cnblogs.com/hu ...

  5. Python 中实现装饰器时使用 @functools.wraps 的理由

    Python 中使用装饰器对在运行期对函数进行一些外部功能的扩展.但是在使用过程中,由于装饰器的加入导致解释器认为函数本身发生了改变,在某些情况下——比如测试时——会导致一些问题.Python 通过  ...

  6. 写python中的装饰器

    python中的装饰器主要用于在已有函数实现功能前附加需要输出的信息,下面将用实例展示我如何写装饰器. 首先分别尝试写装饰器装饰一个无参函数和一个有参函数(被装饰函数仅输出,无返回值情况下) def ...

  7. python中的装饰器decorator

    python中的装饰器 装饰器是为了解决以下描述的问题而产生的方法 我们在已有的函数代码的基础上,想要动态的为这个函数增加功能而又不改变原函数的代码 例如有三个函数: def f1(x): retur ...

  8. python中@property装饰器的使用

    目录 python中@property装饰器的使用 1.引出问题 2.初步改善 3.使用@property 4.解析@property 5.总结 python中@property装饰器的使用 1.引出 ...

  9. 【Python】解析Python中的装饰器

    python中的函数也是对象,函数可以被当作变量传递. 装饰器在python中功能非常强大,装饰器允许对原有函数行为进行扩展,而不用硬编码的方式,它提供了一种面向切面的访问方式. 装饰器 一个普通的装 ...

随机推荐

  1. css3绘制几何图形

    用css3绘制你需要的几何图形 1.圆形 示例: 思路:给任何正方形元素设置一个足够大的 border-radius ,就可以把它变成一个圆形.代码如下: html: <div class=&q ...

  2. 排队论的C实现

    大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang 以下鄙人实现了排队论思想,语言是C语言   #include<stdio.h> #in ...

  3. mysql下怎样运行脚本

    假设要运行脚本: F:\hello world\niuzi.sql 第一种方法:        在命令行下(未连接数据库),输入 mysql -h localhost -u root  -p < ...

  4. oracle的resetlogs机制浅析

    oracle的resetlogs机制浅析 alter database open resetlogs 这个命令我想大家都很熟悉了,那有没有想过这个resetlogs选项为什么要用?什么时候用?它的原理 ...

  5. 这样就算会了PHP么?-10

    关于基本的文件读写内容: <?php echo "readfile function:<br>"; readfile("tm.txt"); e ...

  6. HDU 3507 PrintArticle (单调队列优化)

    题意:给出一个数列C,一个数字M,将数列分成若干段,每段的代价为(设这段的数字为k个): dp[i]=min(dp[j]+(sum[i]-sum[j])*(sum[i]-sum[j])+M) 若j1& ...

  7. htpasswd.cgi 网页远程修改gerrit ht 认证的密码文件

    在搭建gerrit系统时,一般都会采用apache的.htacces 认证方法 但trac本身并不提供修改密码的功能,修改密码只能通过htpasswd/htpasswd2命令来进行,这的确是一件相当不 ...

  8. mysql----用户root被删除或忘记root密码的解决方案

    修改文件my.cnf,可用VIM打开,如:sudo vim /etc/my.cnf 在[mysqld]下加上一行: skip-grant-tables 保存文件,然后重启mysqld程序:sudo s ...

  9. SpringMVC+easyUI CRUD 添加数据C

    接一篇文章,今天上午实现了添加数据.以下是Jsp.里面主要是看newUser()和saveUser().注意这函数里的url,newUser()里面去掉url属性.还要注意的一个问题 <div ...

  10. UCTF Final-Hackventure

    抽出世间将UCTF Final中的hackventure给记录下,算是个总结.题目是有一个游戏,游戏地图是随机生成的,用户可以攻打Server,如果3个Server都被攻占的话,那么用户就赢了,但是并 ...