一、前言

稀疏表示是自上世纪90年代开始,从人眼的视觉感受野获得启示,逐渐被人们所研究。现在已经发展为一种重要的信息表示方法。所谓稀疏表示是指,一个信号在过完备字典中,可以由少数个原子线性表达,

其数学模型可以表达如下:

这个数学模型解算是一个NP-hard问题,也就是说只能通过穷举去获得最优解,其时间复杂度很大,几乎无法获得其精确的解算。在这种情况下,我们常用贪婪算法去获得该模型的次最优解。本文介绍一种主流的贪婪算法——

正交匹配追踪(OMP)。

二、OMP算法

贪婪算法的核心是每次从字典的原子中选择一个最优原子来表示原始的信号。贪婪算法最大的缺点是,在贪婪算法的思想里,认为全局最优是每个局部最优得到的,这实际上很容易进入局部最优解,无法得到数据的全局最优解。

OMP作为贪婪算法中比较具有代表性的算法,其主要思想在于以下两点:

1 认为字典原子在信号投影中的越大,对信号的描述越好;

2 每一次选择的原子都与之前的原子正交。

介于以上两点,OMP算法的描述如下:

上图是从网上摘抄下来的。大概就是那样。但是值得注意的是:这样的OMP算法在解算的时候其效果往往没有ORMP算法好,目前好多人说的OMP算法其实质往往是ORMP算法。

比如:开源的工具箱SPAMS上的OMP算法解算部分,其核心就是ORMP算法。ORMP算法相比如OMP算法的不同在于,在计算完残差后对字典原子进行了另一个的拉伸(具体拉伸见后面代码部分),如下图:

三、SOMP算法

SOMP算法又叫同步OMP算法,主要思想为:相似的原子具有相同的稀疏特性。因此在对相似原子进行稀疏表示时,假设稀疏原子位于相同的位置,及其在过完备字典的选择的原子相同,OMP算法是SOMP算法在原始信号为一个原子

时的特殊情况。OMP算法可以统一到SOMP算法当中,其解算流程几乎同OMP算法部分。

四、代码实现

代码如下:

 cv::Mat ormpSparseRepresentation::ompSparseL2(const cv::Mat Dict, const cv::Mat Y, const int K)
{
int r = Dict.rows;
int c = Dict.cols;
int n = Y.cols;
cv::Mat ERR(r,,CV_32F);
ERR = Y;
int size[] = {c,n};
cv::Mat A = cv::Mat(,size,CV_32F,cv::Scalar(.f));
QVector<int> index;
cv::Mat U = cv::Mat::ones(,c,CV_32F);
cv::Mat tmpA;
for(int i = ;i<K;i++)
{
cv::Mat S = ERR.t()*Dict;
cv::pow(S,,S);
if(S.rows != )
cv::reduce(S,S,,CV_REDUCE_SUM);
cv::sqrt(S,S);
S = S/U;
if(i!=)
{
for(int j = ;j<index.size();j++)
{
S.at<float>(,index[j]) = .f;
}
} cv::Point maxLoc;
cv::minMaxLoc(S,NULL,NULL,NULL,&maxLoc);
int pos = maxLoc.x;
index.append(pos); cv::Mat subDict;
getColDictFormIndex(Dict,index,subDict); cv::Mat invSubDict;
cv::invert(subDict,invSubDict,cv::DECOMP_SVD); tmpA = invSubDict*Y;
ERR = Y - subDict*tmpA; cv::Mat Dict_T_Dict;
cv::mulTransposed(subDict,Dict_T_Dict,);
cv::Mat invDict_T_Dict;
cv::invert(Dict_T_Dict,invDict_T_Dict,cv::DECOMP_SVD); cv::Mat P = (cv::Mat::eye(r,r,CV_32F) - subDict*invDict_T_Dict*subDict.t())*Dict;
cv::pow(P,,P);
cv::reduce(P,P,,CV_REDUCE_SUM);
cv::sqrt(P,U);
}
for(int i = ;i<K;i++)
{
int tmpC = index[i];
const float *inP=tmpA.ptr<float>(i);
float *outP=A.ptr<float>(tmpC);
for(int j = ;j<n;j++)
{
outP[j] = inP[j];
}
}
return A;
}
 void ormpSparseRepresentation::getColDictFormIndex(const cv::Mat Dict, const QVector<int> index, cv::Mat &res)
{
if(index.size() == )
return;
if(!Dict.data)
return; int r = Dict.rows;
int c = index.size(); cv::Mat Dict_T;
cv::transpose(Dict,Dict_T); cv::Mat res_T = cv::Mat(c,r,Dict.type()); for(int i = ;i<index.size();i++)
{
int tmpC = index[i];
const float *inP=Dict_T.ptr<float>(tmpC);
float *outP=res_T.ptr<float>(i);
for(int j = ;j<r;j++)
{
outP[j] = inP[j];
}
}
cv::transpose(res_T,res);
res_T.release();
Dict_T.release();
}

7. 稀疏表示之OMP,SOMP算法及openCV实现的更多相关文章

  1. 稀疏自动编码之反向传播算法(BP)

    假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项( ...

  2. (转载)利用SIFT和RANSAC算法(openCV框架)实现物体的检测与定位,并求出变换矩阵(findFundamentalMat和findHomography的比较) 置顶

    原文链接:https://blog.csdn.net/qq_25352981/article/details/46914837#commentsedit 本文目标是通过使用SIFT和RANSAC算法, ...

  3. SLAM: 图像角点检测的Fast算法(OpenCV文档)

    官方链接:http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_fast/py_fast.html#fast-algorithm- ...

  4. SAD算法在opencv上的实现代码(c++)

    #include <opencv2/opencv.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgu ...

  5. 稀疏分解中的MP与OMP算法

    MP:matching pursuit匹配追踪 OMP:正交匹配追踪 主要介绍MP与OMP算法的思想与流程,解释为什么需要引入正交? !!今天发现一个重大问题,是在读了博主的正交匹配追踪(OMP)在稀 ...

  6. OMP算法代码学习

    正交匹配追踪(OMP)算法的MATLAB函数代码并给出单次测试例程代码 测量数M与重构成功概率关系曲线绘制例程代码 信号稀疏度K与重构成功概率关系曲线绘制例程代码   参考来源:http://blog ...

  7. 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)

    主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...

  8. MP算法、OMP算法及其在人脸识别的应用

    主要内容: 1.MP算法 2.OMP算法 3.OMP算法的matlab实现 4.OMP在压缩感知和人脸识别的应用 一.MP(Matching Pursuits)与OMP(Orthogonal Matc ...

  9. scikit-learn 线性回归算法库小结

    scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景. 线性回归的目的是要得到输 ...

随机推荐

  1. Html与css基础

    1.html的定义 (1).html:超文本标记语言(HyperText Markup Language),它主要包括"头"(Head)和"主体"(Body)两 ...

  2. div和span的区别

    <div>是一个块级元素,我们可以把它比喻成盒子,它没什么实际语义能用到很多地方,独占一行不能和其它元素在一行,它还能把<div>和<span>”装在盒子里”,主要 ...

  3. 未能加载文件或程序集“System.Web.Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”

    最近用vs2012发布程序,然后将更新后的程序文件部署到服务器上,由于服务器上本来有此系统,所以只更新了修改的文件 . 进行系统登录时提示:未能加载文件或程序集“System.Web.Extensio ...

  4. (转)javascript组件开发方式

    作为一名前端工程师,写组件的能力至关重要.虽然javascript经常被人嘲笑是个小玩具,但是在一代代大牛的前仆后继的努力下,渐渐的也摸索了一套组件的编写方式. 下面我们来谈谈,在现有的知识体系下,如 ...

  5. C#编写Windows服务程序图文教程(转载)

    Windows Service这一块并不复杂,但是注意事项太多了,网上资料也很凌乱,偶尔自己写也会丢三落四的.所以本文也就产生了,本文不会写复杂的东西,完全以基础应用的需求来写,所以不会对Window ...

  6. Csharp 高级编程 C7.1.2(2)

    C#2.0  使用委托推断扩展委托的语法下面是示例  一个货币结构 代理的方法可以是实例的方法,也可以是静态方法,声明方法不同 实例方法可以使用委托推断,静态方法不可以用 示例代码: /* * C#2 ...

  7. SDK文件夹下内容介绍

    Platform-Tools: 这是 adb, fastboot 等工具包.把解压出来的 platform-tools 文件夹放在 android sdk 根目录下,并把 adb所在的目录添加到系统 ...

  8. C#创建Windows服务的几个注意事项

    1.服务安装后的自动启动:服务的StartType即使配置成Automatic,在首次安装成功之后还是要在服务列表中找到并手工启动.此外,可以通过在ProjectInstaller中添加AfterIn ...

  9. python - num1 -初识python

    一.了解python python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC ...

  10. 【7】python核心编程 第十一章-函数和函数式编程

    1.*函数(与方法)装饰器 装饰器背后的主要动机源自python 面向对象编程.装饰器是在函数调用之上的修饰.这些修饰 仅是当声明一个函数或者方法的时候,才会应用的额外调用. 装饰器的语法以@开头,接 ...