摘要:

RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集
RDD有两种操作算子:

        Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作
         Ation(执行):触发Spark作业的运行,真正触发转换算子的计算
 
本系列主要讲解Spark中常用的函数操作:
         1.RDD基本转换
         2.键-值RDD转换
        3.Action操作篇
 
本节所讲函数
 
1.mapValus(fun):对[K,V]型数据中的V值map操作
(例1):对每个的的年龄加2
object MapValues {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("map")
val sc = new SparkContext(conf)
val list = List(("mobin",22),("kpop",20),("lufei",23))
val rdd = sc.parallelize(list)
val mapValuesRDD = rdd.mapValues(_+2)
mapValuesRDD.foreach(println)
}
}
输出:
(mobin,)
(kpop,)
(lufei,)
(RDD依赖图:红色块表示一个RDD区,黑色块表示该分区集合,下同)
 
 
2.flatMapValues(fun):对[K,V]型数据中的V值flatmap操作
(例2):
//省略
val list = List(("mobin",22),("kpop",20),("lufei",23))
val rdd = sc.parallelize(list)
val mapValuesRDD = rdd.flatMapValues(x => Seq(x,"male"))
mapValuesRDD.foreach(println)
输出:
(mobin,)
(mobin,male)
(kpop,)
(kpop,male)
(lufei,)
(lufei,male)
如果是mapValues会输出:
(mobin,List(, male))
(kpop,List(, male))
(lufei,List(, male))
(RDD依赖图)
 
 
3.comineByKey(createCombiner,mergeValue,mergeCombiners,partitioner,mapSideCombine)
 
   comineByKey(createCombiner,mergeValue,mergeCombiners,numPartitions)
 
   comineByKey(createCombiner,mergeValue,mergeCombiners)
 
createCombiner:在第一次遇到Key时创建组合器函数,将RDD数据集中的V类型值转换C类型值(V => C),
如例3:
mergeValue:合并值函数,再次遇到相同的Key时,将createCombiner道理的C类型值与这次传入的V类型值合并成一个C类型值(C,V)=>C,
如例3:
mergeCombiners:合并组合器函数,将C类型值两两合并成一个C类型值
如例3:
 
partitioner:使用已有的或自定义的分区函数,默认是HashPartitioner
 
mapSideCombine:是否在map端进行Combine操作,默认为true
 
注意前三个函数的参数类型要对应;第一次遇到Key时调用createCombiner,再次遇到相同的Key时调用mergeValue合并值
 
(例3):统计男性和女生的个数,并以(性别,(名字,名字....),个数)的形式输出
object CombineByKey {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("combinByKey")
val sc = new SparkContext(conf)
val people = List(("male", "Mobin"), ("male", "Kpop"), ("female", "Lucy"), ("male", "Lufei"), ("female", "Amy"))
val rdd = sc.parallelize(people)
val combinByKeyRDD = rdd.combineByKey(
(x: String) => (List(x), 1),
(peo: (List[String], Int), x : String) => (x :: peo._1, peo._2 + 1),
(sex1: (List[String], Int), sex2: (List[String], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
combinByKeyRDD.foreach(println)
sc.stop()
}
}
输出:
(male,(List(Lufei, Kpop, Mobin),))
(female,(List(Amy, Lucy),))
过程分解:
Partition1:
K="male" --> ("male","Mobin") --> createCombiner("Mobin") => peo1 = ( List("Mobin") , )
K="male" --> ("male","Kpop") --> mergeValue(peo1,"Kpop") => peo2 = ( "Kpop" :: peo1_1 , + ) //Key相同调用mergeValue函数对值进行合并
K="female" --> ("female","Lucy") --> createCombiner("Lucy") => peo3 = ( List("Lucy") , ) Partition2:
K="male" --> ("male","Lufei") --> createCombiner("Lufei") => peo4 = ( List("Lufei") , )
K="female" --> ("female","Amy") --> createCombiner("Amy") => peo5 = ( List("Amy") , ) Merger Partition:
K="male" --> mergeCombiners(peo2,peo4) => (List(Lufei,Kpop,Mobin))
K="female" --> mergeCombiners(peo3,peo5) => (List(Amy,Lucy))
(RDD依赖图)
 
4.foldByKey(zeroValue)(func)
 
  foldByKey(zeroValue,partitioner)(func)
 
  foldByKey(zeroValue,numPartitiones)(func)
 
foldByKey函数是通过调用CombineByKey函数实现的
 
zeroVale:对V进行初始化,实际上是通过CombineByKey的createCombiner实现的  V =>  (zeroValue,V),再通过func函数映射成新的值,即func(zeroValue,V),如例4可看作对每个V先进行  V=> 2 + V  
 
func: Value将通过func函数按Key值进行合并(实际上是通过CombineByKey的mergeValue,mergeCombiners函数实现的,只不过在这里,这两个函数是相同的)
例4:
//省略
val people = List(("Mobin", 2), ("Mobin", 1), ("Lucy", 2), ("Amy", 1), ("Lucy", 3))
val rdd = sc.parallelize(people)
val foldByKeyRDD = rdd.foldByKey(2)(_+_)
foldByKeyRDD.foreach(println)
输出:
(Amy,)
(Mobin,)
(Lucy,)
先对每个V都加2,再对相同Key的value值相加。
 
 
5.reduceByKey(func,numPartitions):按Key进行分组,使用给定的func函数聚合value值, numPartitions设置分区数,提高作业并行度
例5
 //省略
val arr = List(("A",3),("A",2),("B",1),("B",3))
val rdd = sc.parallelize(arr)
val reduceByKeyRDD = rdd.reduceByKey(_ +_)
reduceByKeyRDD.foreach(println)
sc.stop
输出:
(A,)
(A,)
(RDD依赖图)
 
6.groupByKey(numPartitions):按Key进行分组,返回[K,Iterable[V]],numPartitions设置分区数,提高作业并行度
例6:
//省略
val arr = List(("A",1),("B",2),("A",2),("B",3))
val rdd = sc.parallelize(arr)
val groupByKeyRDD = rdd.groupByKey()
groupByKeyRDD.foreach(println)
sc.stop
输出:
(B,CompactBuffer(, ))
(A,CompactBuffer(, ))
 
以上foldByKey,reduceByKey,groupByKey函数最终都是通过调用combineByKey函数实现的
 
7.sortByKey(accending,numPartitions):返回以Key排序的(K,V)键值对组成的RDD,accending为true时表示升序,为false时表示降序,numPartitions设置分区数,提高作业并行度
例7:
//省略sc
val arr = List(("A",1),("B",2),("A",2),("B",3))
val rdd = sc.parallelize(arr)
val sortByKeyRDD = rdd.sortByKey()
sortByKeyRDD.foreach(println)
sc.stop
输出:
(A,)
(A,)
(B,)
(B,)
 
8.cogroup(otherDataSet,numPartitions):对两个RDD(如:(K,V)和(K,W))相同Key的元素先分别做聚合,最后返回(K,Iterator<V>,Iterator<W>)形式的RDD,numPartitions设置分区数,提高作业并行度
例8:
 //省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
val rdd1 = sc.parallelize(arr, 3)
val rdd2 = sc.parallelize(arr1, 3)
val groupByKeyRDD = rdd1.cogroup(rdd2)
groupByKeyRDD.foreach(println)
sc.stop
输出:
(B,(CompactBuffer(, ),CompactBuffer(B1, B2)))
(A,(CompactBuffer(, ),CompactBuffer(A1, A2)))
(RDD依赖图)
 
 
9.join(otherDataSet,numPartitions):对两个RDD先进行cogroup操作形成新的RDD,再对每个Key下的元素进行笛卡尔积,numPartitions设置分区数,提高作业并行度
例9
//省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
val rdd = sc.parallelize(arr, 3)
val rdd1 = sc.parallelize(arr1, 3)
val groupByKeyRDD = rdd.join(rdd1)
groupByKeyRDD.foreach(println)
输出:
(B,(,B1))
(B,(,B2))
(B,(,B1))
(B,(,B2)) (A,(,A1))
(A,(,A2))
(A,(,A1))
(A,(,A2)
(RDD依赖图)
 
 
10.LeftOutJoin(otherDataSet,numPartitions):左外连接,包含左RDD的所有数据,如果右边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
例10:
//省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3),("C",1))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
val rdd = sc.parallelize(arr, 3)
val rdd1 = sc.parallelize(arr1, 3)
val leftOutJoinRDD = rdd.leftOuterJoin(rdd1)
leftOutJoinRDD .foreach(println)
sc.stop
输出:
(B,(,Some(B1)))
(B,(,Some(B2)))
(B,(,Some(B1)))
(B,(,Some(B2))) (C,(,None)) (A,(,Some(A1)))
(A,(,Some(A2)))
(A,(,Some(A1)))
(A,(,Some(A2)))
 
11.RightOutJoin(otherDataSet, numPartitions):右外连接,包含右RDD的所有数据,如果左边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
例11:
 //省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"),("C","C1"))
val rdd = sc.parallelize(arr, 3)
val rdd1 = sc.parallelize(arr1, 3)
val rightOutJoinRDD = rdd.rightOuterJoin(rdd1)
rightOutJoinRDD.foreach(println)
sc.stop
输出:
(B,(Some(),B1))
(B,(Some(),B2))
(B,(Some(),B1))
(B,(Some(),B2)) (C,(None,C1)) (A,(Some(),A1))
(A,(Some(),A2))
(A,(Some(),A1))
(A,(Some(),A2))

以上例子源码地址:https://github.com/Mobin-F/SparkExample/tree/master/src/main/scala/com/mobin/SparkRDDFun/TransFormation/RDDBase

Spark常用函数讲解之键值RDD转换的更多相关文章

  1. Spark常用函数讲解之Action操作

    摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Trans ...

  2. Spark之键值RDD转换(转载)

    1.mapValus(fun):对[K,V]型数据中的V值map操作(例1):对每个的的年龄加2 object MapValues { def main(args: Array[String]) { ...

  3. Spark学习笔记3:键值对操作

    键值对RDD通常用来进行聚合计算,Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为pair RDD.pair RDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口. S ...

  4. spark 常用函数介绍(python)

    以下是个人理解,一切以官网文档为准. http://spark.apache.org/docs/latest/api/python/pyspark.html 在开始之前,我先介绍一下,RDD是什么? ...

  5. spark入门(三)键值对操作

    1 简述 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD. 2 创建PairRDD 2.1 在sprk中,很多存储键值对的数据在读取时直接返回由其键值对数据组成 ...

  6. Spark常用函数(源码阅读六)

    源码层面整理下我们常用的操作RDD数据处理与分析的函数,从而能更好的应用于工作中. 连接Hbase,读取hbase的过程,首先代码如下: def tableInitByTime(sc : SparkC ...

  7. 四、spark常用函数说明学习

    1.parallelize       并行集合,切片数.默认为这个程序所分配到的资源的cpu核的个数.       查看大小:rdd.partitions.size      sc.paraliel ...

  8. Opencv常用函数讲解

    1.approxPolyDP(Mat(ps), poly, 5, true);//根据点集,拟合出多边形 2.fillConvexPoly(mask, Mat(ps), Scalar(255));根据 ...

  9. Spark函数详解系列之RDD基本转换

    摘要:   RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集   RDD有两种操作算子:         ...

随机推荐

  1. [Redux] Extracting Presentational Components -- Footer, FilterLink

    Code to be refactored: let nextTodoId = 0; class TodoApp extends Component { render() { const { todo ...

  2. LeetCode 58 Spiral Matrix II

    Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For ...

  3. EL 表达式中自己定义函数

    第一步: 在WEB-INF/tld/ 文件夹下创建一个func.tld文件例如以下: <taglib xmlns="http://java.sun.com/xml/ns/j2ee&qu ...

  4. 使用Qt Style Sheets制作UI特效

    引言 作为一套GUI框架,Qt是非常强大的.(注:Qt 不仅是一套优秀的GUI框架,同时也是一套出色的应用程序框架).在UI的制作方面Qt为广大开发者提供了一套强大而易用的工具,她就是——Qt Sty ...

  5. Less 教程

    1. 关于 less sass 的预编译处理器 LESS 将 CSS 赋予了动态语言的特性,如 变量, 继承, 运算, 函数. LESS 既可以在 客户端 上运行 (支持IE 6+, Webkit, ...

  6. 普通用户登录PLSQL后提示空白OK对话框错误

    问题描述: 1.普通域账号登录域成员服务器后,打开PLSQL正常,输入用户名密码登录后提示一个空白的OK对话框,点确定后又返回到输入用户密码界面. 2.在CMD窗口下调用SQLPLUS登录数据库时报如 ...

  7. CodeSmith使用总结--调用自定义方法

    上一篇读取了一个表的内容,但是到了真正应用的时候还是不够用的,我们很容易可以对比出来,SQL里边的数据类型的定义和C#中有所不同,比如Saler--String,大写的String在C#中不是一个类型 ...

  8. iocfont 网页图标字体以及使用方法

    在网页设计中使用图标字体(icon font)是件挺有新意的事情,使用图标字体能我们带来了一定的方便,比如在移动设备.Retina屏幕效果展示.兼容IE6/7浏览器以及能任意将图标放大缩小等,这些都是 ...

  9. 无法连接到ASP.NET Development Server 解决办法

    右击项目名称 ->  属性 -> Web -> 选特定端口 -> 输入一个端口值.

  10. C#操作Flash动画

    对于在C#开发的过程中没有接触过Flash相关开发的人员来说,没有系统的资料进行学习,那么这篇文档针对于初学者来说是很好的学习DEMO. 本文章中的DEMO实现了C#的COM控件库中本来就带有对fla ...