Permutation Sequence 解答
Question
The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
Solution -- Math
We can conclude a pattern by obeservation.
[x1, x2, x3, .., xn]
If we fix x1, then number of permutations is (n - 1)!
If we fix x1 and x2, then number of permutations is (n - 2)!
Following this thinking way, we can solve this problem by finding xi iteratively.
We also need a visited array here to note which element has been used.
public class Solution {
public String getPermutation(int n, int k) {
StringBuilder sb = new StringBuilder(n);
if (n < 1 || n > 9)
return sb.toString();
int factorial = 1;
for (int i = 1; i <= n; i++) {
factorial *= i;
}
if (k > factorial || k < 1)
return sb.toString();
boolean[] visited = new boolean[n]; int num = n;
int start = 1;
while (num > 0) {
factorial /= num;
start += (k / factorial);
if (k % factorial == 0)
start -= 1;
int index = 0;
for (int i = 1; i <= n; i++) {
// Find the right index
if (!visited[i - 1])
index++;
if (index == start) {
sb.append(i);
visited[i - 1] = true;
break;
}
}
k = k - (start - 1) * factorial;
start = 1;
num--;
}
return sb.toString();
}
}
Permutation Sequence 解答的更多相关文章
- LeetCode: Permutation Sequence 解题报告
Permutation Sequence https://oj.leetcode.com/problems/permutation-sequence/ The set [1,2,3,…,n] cont ...
- LeetCode OJ 60. Permutation Sequence
题目 The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of th ...
- LeetCode解题报告—— Jump Game & Merge Intervals & Permutation Sequence
1. Jump Game Given an array of non-negative integers, you are initially positioned at the first inde ...
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Permutation Sequence 序列排序
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- Leetcode 60. Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- 【leetcode】 Permutation Sequence (middle)
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- 60. Permutation Sequence
题目: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...
- [Leetcode] Permutation Sequence
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
随机推荐
- MVC View返回list列表
); Sql sql2 = ); Sql sql3 = ); Sql sql4 = ); Sql sql ...
- Cracking the coding interview 第一章问题及解答
Cracking the coding interview 第一章问题及解答 不管是不是要挪地方,面试题具有很好的联系代码总用,参加新工作的半年里,做的大多是探索性的工作,反而代码写得少了,不高兴,最 ...
- Find Successor & Predecessor in BST
First, we use recursive way. Successor public class Solution { public TreeNode inorderSuccessor(Tree ...
- Walls and Gates 解答
Question You are given a m x n 2D grid initialized with these three possible values. -1 - A wall or ...
- JAVA大整数傻瓜入门
http://blog.csdn.net/skiffloveblue/article/details/7032290..先记着
- WifiDog and OpenWrt
$Id$ 2 3 OpenWRT specific README 4 ======================= 5 6 So, you want to run wifidog on on ...
- 【转】NAT路由器打洞原理
什么是打洞,为什么要打洞 由于Internet的快速发展 IPV4地址不够用,不能每个主机分到一个公网IP 所以使用NAT地址转换. 下面是我在网上找到的一副图 一般来说都是由私网内主机(例如上图中“ ...
- poj 3045 Cow Acrobats(二分搜索?)
Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...
- [Python学习笔记][第五章Python函数设计与使用]
2016/1/29学习内容 第四章 Python函数设计与使用 之前的几页忘记保存了 很伤心 变量作用域 -一个变量已在函数外定义,如果在函数内需要修改这个变量的值,并将这个赋值结果反映到函数之外,可 ...
- 简化工作——我的bat文件
重启adb(radb.bat): @echo off call adb kill-server call adb start-server call adb remount push 一个apk(pu ...