主要内容:

Spotify是个类似酷我音乐的音乐站点。做个性化音乐推荐和音乐消费。作者利用deep learning结合协同过滤来做音乐推荐。

详细内容:

1. 协同过滤

基本原理:某两个用户听的歌曲都差点儿相同,说明这两个用户听歌的兴趣、品味类似。某两个歌曲,被同一群人听,说明这两个歌曲风格类似。
缺点:
(1)没有利用歌曲本身的特征(信息)
(2)无法对“层级”的item进行处理,对于歌曲来说,这样的层级关系体如今:专辑—主打歌—副歌,上面,这几种因素并非同等重要的
(3)冷启动问题:协同过滤的方法用用户行为来进行推荐,没有行为的用户和item怎么办?

2. 基于内容的推荐

spotify正在进行的尝试,用内容之间的关系(相似度)来进行推荐。content-based recommendation,除了用用户行为信息之外,歌曲内容的信息也能够被用来计算item之间的相似度。

而作者在这里要尝试的是,依据歌曲本身的音频信号来计算歌曲之间的相似度。

DL擅好处理音频、图像等原始信息,作者用DL在这里来处理歌曲的音频信息,从而计算歌曲之间的相似度。(个人补充:同一时候,用户听得歌曲列表,也能够看做是一首歌曲,这首歌曲也能够计算和其它歌曲的相似度。这样就计算了用户和某个歌曲的相似程度。进一步作为给当前用户做推荐的理由)


3. predicting listening preference with deep learning

将歌曲音频信息、以及歌曲的其它标记信息(专辑、作者等)通过深度神经网络的方式映射到一个低维latent space中,用这个低维空间向量来表示歌曲。

神经网络的结构例如以下:


最左端是音频输入层。然后是连个卷及网络,然后是几个全连接的正常神经网络。作者并没有解释为什么是这种网络结构。最后一层40个节点。输出是vector_exp算法的结果,不是softmax。只是从名字上看貌似他俩都差点儿相同,可能一个实现性函数。还有一个是非线性的函数。


用神经网络的一个问题就是:神经网络的输出是定长的,而歌曲音频(不管从时间还是从文件大小来看)都是变长的,怎样把边长的原始输入映射到定长的神经网络输入其中?——这个也是NLP领域在用神经网络的时候遇到的问题。作者的作法非常粗糙也非常干脆:把音频文件分成3秒钟一个段,然后各段的输入数值取平均值,作为整个歌曲的输入向量。

对于一个用户。历史上听过非常多歌曲,也是这么处理,终于得到用户的歌曲向量。


4. 训练

用MSE准则来训练。

另一个问题,DL是有监督学习方法。那么神经网络的标准输出是什么?也就是。对于一个给定歌曲,最后40维的标准输出结果是什么?我理解。文章中的意思是标准协同过滤模型、通过LDA等降维之后。当前歌曲相应的维度输出结果。那么,接下来的问题,既然用矩阵分解的结果作为标准,作者为什么还费事训练DL呢?一方面是解决冷启动问题(对于新歌的预測),另一方面,对音频信息与矩阵分解结果做映射,可能就像作者文章最開始说的。也能利用音频本身的信息吧。

在模型应用上面。训练好神经网络之后,对于一个新歌。可以通过既定的网络參数计算得出这个歌曲的相应的latent representation(40维输出结果);而对于一个用户,通过对他历史听歌习惯来进行计算。也能计算这样一个40维的结果,两个向量夹角就能计算这个用户是否是对这个歌曲感兴趣。

5. 其它尝试

作者还做了其它尝试。包含用不同的协同过滤模型分别训练出来40维结果。然后将这些向量拼起来。或者尝试用很多其它层的神经网络。



6. what is it learning?


分析详细的学习结果:音频片段等等。


完。


转载请注明出处:http://blog.csdn.net/xceman1997/article/details/38475083

【deep learning学习笔记】Recommending music on Spotify with deep learning的更多相关文章

  1. 【deep learning学习笔记】注释yusugomori的DA代码 --- dA.h

    DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别 ...

  2. Deep Q-Network 学习笔记(二)—— Q-Learning与神经网络结合使用(有代码实现)

    参考资料: https://morvanzhou.github.io/ 非常感谢莫烦老师的教程 http://mnemstudio.org/path-finding-q-learning-tutori ...

  3. Deep Q-Network 学习笔记(一)—— Q-Learning 学习与实现过程中碰到的一些坑

    这方面的资料比较零散,学起来各种碰壁,碰到各种问题,这里就做下学习记录. 参考资料: https://morvanzhou.github.io/ 非常感谢莫烦老师的教程 http://mnemstud ...

  4. [Machine Learning]学习笔记-Logistic Regression

    [Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...

  5. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  6. Deep Learning 学习笔记(8):自编码器( Autoencoders )

    之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得 ...

  7. machine learning学习笔记

    看到Max Welling教授主页上有不少学习notes,收藏一下吧,其最近出版了一本书呢还,还没看过. http://www.ics.uci.edu/~welling/classnotes/clas ...

  8. Recommending music on Spotify with deep learning 采用深度学习算法为Spotify做基于内容的音乐推荐

    本文参考http://blog.csdn.net/zdy0_2004/article/details/43896015译文以及原文file:///F:/%E6%9C%BA%E5%99%A8%E5%AD ...

  9. [置顶] Deep Learning 学习笔记

    一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不 ...

随机推荐

  1. Centos for php+mysql+apache

    一.安装 MySQL 首先来进行 MySQL 的安装.打开超级终端,输入: [root@localhost ~]# yum install mysql mysql-server 安装完毕,让 MySQ ...

  2. 勉強すべきURL

    http://www.atmarkit.co.jp/ait/articles/1403/19/news034_2.html http://webdesignerwork.jp/web/responsi ...

  3. JS知识点摘记(一)

    JavaScript:基于对象和事件的脚本语言 特点: 安全性:不允许直接访问本地硬盘,可做的就是信息的动态交互 跨平台性:只要可以解析JS的浏览器就可执行,与平台无关 JavaScript与Java ...

  4. ulimit 说明

    ulimit官方描述 Provides control over the resources available to the shell and to processes started by it ...

  5. poj2350

    #include <stdio.h> #include <stdlib.h> int main() { ],tim,i; scanf("%d",&n ...

  6. 写个脚本列出neutron的ovs的topology。

    运行结果如下: $ ./nova-ifinfo  a7026868-407c-4c54-bb8f-a68623d7e13fvm name is: instance-00000035    # 查找VM ...

  7. nginx File not found 错误分析与解决方法

    使用php-fpm解析PHP,出错提示如下:"No input file specified","File not found",原因是php-fpm进程找不到 ...

  8. 面向对象程序设计-C++_课时30运算符重载——基本规则_课时31运算符重载——原型_课时32运算符重载——赋值_课时33运算符重载——类型转换

    区分初始化,赋值 #include <iostream> using namespace std; class Fi { public: Fi() {}//1构造函数 }; class F ...

  9. iOS 使用Method Swizzling隐藏Status Bar

    在iOS 6中,隐藏Status Bar很的简单. // iOS 6及曾经,隐藏状态栏 [[UIApplication sharedApplication] setStatusBarHidden:YE ...

  10. Orcale语句大全

    原文地址:http://www.cnblogs.com/omygod/archive/2007/08/31/876620.html Oracle 语句大全 1. Oracle安装完成后的初始口令?  ...