[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子

从如下地址获取文件:
https://github.com/databricks/spark-avro/raw/master/src/test/resources/episodes.avro

导入到 hdfs 系统:
hdfs dfs -put episodes.avro

读入:
mydata001=sqlContext.read.format("com.databricks.spark.avro").load("episodes.avro")

交互式运行结果:

In [7]: mydata001=sqlContext.read.format("com.databricks.spark.avro").load("episodes.avro")
17/10/03 07:00:47 INFO avro.AvroRelation: Listing hdfs://localhost:8020/user/training/episodes.avro on driver

In [8]: type(mydata001)
Out[8]: pyspark.sql.dataframe.DataFrame

In [9]: mydata001.count()
17/10/03 07:01:05 INFO storage.MemoryStore: Block broadcast_3 stored as values in memory (estimated size 65.5 KB, free 65.5 KB)
17/10/03 07:01:05 INFO storage.MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 21.4 KB, free 86.9 KB)
17/10/03 07:01:05 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on localhost:40075 (size: 21.4 KB, free: 208.8 MB)
17/10/03 07:01:05 INFO spark.SparkContext: Created broadcast 3 from count at NativeMethodAccessorImpl.java:-2
17/10/03 07:01:05 INFO storage.MemoryStore: Block broadcast_4 stored as values in memory (estimated size 230.4 KB, free 317.3 KB)
17/10/03 07:01:06 INFO storage.MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 21.5 KB, free 338.8 KB)
17/10/03 07:01:06 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on localhost:40075 (size: 21.5 KB, free: 208.8 MB)
17/10/03 07:01:06 INFO spark.SparkContext: Created broadcast 4 from hadoopFile at AvroRelation.scala:121
17/10/03 07:01:06 INFO mapred.FileInputFormat: Total input paths to process : 1
17/10/03 07:01:07 INFO spark.SparkContext: Starting job: count at NativeMethodAccessorImpl.java:-2
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Registering RDD 16 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Got job 1 (count at NativeMethodAccessorImpl.java:-2) with 1 output partitions
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Final stage: ResultStage 3 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Parents of final stage: List(ShuffleMapStage 2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Missing parents: List(ShuffleMapStage 2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Submitting ShuffleMapStage 2 (MapPartitionsRDD[16] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 07:01:07 INFO storage.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 11.5 KB, free 350.3 KB)
17/10/03 07:01:07 INFO storage.MemoryStore: Block broadcast_5_piece0 stored as bytes in memory (estimated size 5.7 KB, free 356.0 KB)
17/10/03 07:01:07 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on localhost:40075 (size: 5.7 KB, free: 208.8 MB)
17/10/03 07:01:07 INFO spark.SparkContext: Created broadcast 5 from broadcast at DAGScheduler.scala:1006
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ShuffleMapStage 2 (MapPartitionsRDD[16] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:07 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0 with 1 tasks
17/10/03 07:01:07 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 2.0 (TID 2, localhost, partition 0,PROCESS_LOCAL, 2249 bytes)
17/10/03 07:01:07 INFO executor.Executor: Running task 0.0 in stage 2.0 (TID 2)
17/10/03 07:01:07 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/episodes.avro:0+597
17/10/03 07:01:08 INFO executor.Executor: Finished task 0.0 in stage 2.0 (TID 2). 2484 bytes result sent to driver
17/10/03 07:01:08 INFO scheduler.DAGScheduler: ShuffleMapStage 2 (count at NativeMethodAccessorImpl.java:-2) finished in 0.691 s
17/10/03 07:01:08 INFO scheduler.DAGScheduler: looking for newly runnable stages
17/10/03 07:01:08 INFO scheduler.DAGScheduler: running: Set()
17/10/03 07:01:08 INFO scheduler.DAGScheduler: waiting: Set(ResultStage 3)
17/10/03 07:01:08 INFO scheduler.DAGScheduler: failed: Set()
17/10/03 07:01:08 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 2.0 (TID 2) in 693 ms on localhost (1/1)
17/10/03 07:01:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool
17/10/03 07:01:08 INFO scheduler.DAGScheduler: Submitting ResultStage 3 (MapPartitionsRDD[19] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 07:01:08 INFO storage.MemoryStore: Block broadcast_6 stored as values in memory (estimated size 12.6 KB, free 368.5 KB)
17/10/03 07:01:08 INFO storage.MemoryStore: Block broadcast_6_piece0 stored as bytes in memory (estimated size 6.1 KB, free 374.7 KB)
17/10/03 07:01:08 INFO storage.BlockManagerInfo: Added broadcast_6_piece0 in memory on localhost:40075 (size: 6.1 KB, free: 208.8 MB)
17/10/03 07:01:08 INFO spark.SparkContext: Created broadcast 6 from broadcast at DAGScheduler.scala:1006
17/10/03 07:01:08 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 3 (MapPartitionsRDD[19] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:08 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0 with 1 tasks
17/10/03 07:01:08 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 3.0 (TID 3, localhost, partition 0,NODE_LOCAL, 1999 bytes)
17/10/03 07:01:08 INFO executor.Executor: Running task 0.0 in stage 3.0 (TID 3)
17/10/03 07:01:08 INFO storage.ShuffleBlockFetcherIterator: Getting 1 non-empty blocks out of 1 blocks
17/10/03 07:01:08 INFO storage.ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
17/10/03 07:01:08 INFO executor.Executor: Finished task 0.0 in stage 3.0 (TID 3). 1666 bytes result sent to driver
17/10/03 07:01:08 INFO scheduler.DAGScheduler: ResultStage 3 (count at NativeMethodAccessorImpl.java:-2) finished in 0.344 s
17/10/03 07:01:08 INFO scheduler.DAGScheduler: Job 1 finished: count at NativeMethodAccessorImpl.java:-2, took 1.480495 s
17/10/03 07:01:08 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 3.0 (TID 3) in 345 ms on localhost (1/1)
17/10/03 07:01:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0, whose tasks have all completed, from pool
Out[9]: 8

In [10]: mydata001.take(1)
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_7 stored as values in memory (estimated size 230.1 KB, free 604.8 KB)
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_7_piece0 stored as bytes in memory (estimated size 21.4 KB, free 626.2 KB)
17/10/03 07:01:18 INFO storage.BlockManagerInfo: Added broadcast_7_piece0 in memory on localhost:40075 (size: 21.4 KB, free: 208.7 MB)
17/10/03 07:01:18 INFO spark.SparkContext: Created broadcast 7 from take at <ipython-input-10-35862abbc114>:1
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_8 stored as values in memory (estimated size 230.5 KB, free 856.7 KB)
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_8_piece0 stored as bytes in memory (estimated size 21.5 KB, free 878.2 KB)
17/10/03 07:01:18 INFO storage.BlockManagerInfo: Added broadcast_8_piece0 in memory on localhost:40075 (size: 21.5 KB, free: 208.7 MB)
17/10/03 07:01:18 INFO spark.SparkContext: Created broadcast 8 from take at <ipython-input-10-35862abbc114>:1
17/10/03 07:01:18 INFO mapred.FileInputFormat: Total input paths to process : 1
17/10/03 07:01:18 INFO spark.SparkContext: Starting job: take at <ipython-input-10-35862abbc114>:1
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Got job 2 (take at <ipython-input-10-35862abbc114>:1) with 1 output partitions
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Final stage: ResultStage 4 (take at <ipython-input-10-35862abbc114>:1)
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Missing parents: List()
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Submitting ResultStage 4 (MapPartitionsRDD[27] at take at <ipython-input-10-35862abbc114>:1), which has no missing parents
17/10/03 07:01:19 INFO storage.MemoryStore: Block broadcast_9 stored as values in memory (estimated size 5.6 KB, free 883.8 KB)
17/10/03 07:01:19 INFO storage.MemoryStore: Block broadcast_9_piece0 stored as bytes in memory (estimated size 3.0 KB, free 886.9 KB)
17/10/03 07:01:19 INFO storage.BlockManagerInfo: Added broadcast_9_piece0 in memory on localhost:40075 (size: 3.0 KB, free: 208.7 MB)
17/10/03 07:01:19 INFO spark.SparkContext: Created broadcast 9 from broadcast at DAGScheduler.scala:1006
17/10/03 07:01:19 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 4 (MapPartitionsRDD[27] at take at <ipython-input-10-35862abbc114>:1)
17/10/03 07:01:19 INFO scheduler.TaskSchedulerImpl: Adding task set 4.0 with 1 tasks
17/10/03 07:01:19 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 4.0 (TID 4, localhost, partition 0,PROCESS_LOCAL, 2260 bytes)
17/10/03 07:01:19 INFO executor.Executor: Running task 0.0 in stage 4.0 (TID 4)
17/10/03 07:01:19 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/episodes.avro:0+597
17/10/03 07:01:19 INFO codegen.GenerateUnsafeProjection: Code generated in 124.624053 ms
17/10/03 07:01:19 INFO executor.Executor: Finished task 0.0 in stage 4.0 (TID 4). 2237 bytes result sent to driver
17/10/03 07:01:19 INFO scheduler.DAGScheduler: ResultStage 4 (take at <ipython-input-10-35862abbc114>:1) finished in 0.415 s
17/10/03 07:01:19 INFO scheduler.DAGScheduler: Job 2 finished: take at <ipython-input-10-35862abbc114>:1, took 0.565858 s
17/10/03 07:01:19 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 4.0 (TID 4) in 415 ms on localhost (1/1)
17/10/03 07:01:19 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool
Out[10]: [Row(title=u'The Eleventh Hour', air_date=u'3 April 2010', doctor=11)]

In [11]:

[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子的更多相关文章

  1. [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:

    [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...

  2. Spark中如何生成Avro文件

    研究spark的目的之一就是要取代MR,目前我司MR的一个典型应用场景即为生成Avro文件,然后加载到HIVE表里,所以如何在Spark中生成Avro文件,就是必然之路了. 我本人由于对java不熟, ...

  3. [Spark][Python]Spark Python 索引页

    Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子

  4. [spark][python]Spark map 处理

    map 就是对一个RDD的各个元素都施加处理,得到一个新的RDD 的过程 [training@localhost ~]$ cat names.txtYear,First Name,County,Sex ...

  5. python批量读取txt文件为DataFrame

    我们有时候会批量处理同一个文件夹下的文件,并且希望读取到一个文件里面便于我们计算操作.比方我有下图一系列的txt文件,我该如何把它们写入一个txt文件中并且读取为DataFrame格式呢? 首先我们要 ...

  6. Python抓取远程文件获取真实文件名

    用urllib下载远程文件并转存到hdfs服务器,在下载时,下载地址中不一定包含文件名,需要从连接信息中获取. 1 file_url = request.form.get('file_url') 2 ...

  7. Python——urllib函数网络文件获取

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  8. [Spark][Python]Spark Join 小例子

    [training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...

  9. [Spark][python]以DataFrame方式打开Json文件的例子

    [Spark][python]以DataFrame方式打开Json文件的例子: [training@localhost ~]$ cat people.json{"name":&qu ...

随机推荐

  1. 如何解决用CMake未定义引用`JNI_CreateJavaVM'?

    我需要从C ++运行Java,一般来说问题已经解决,但我的make系统或脚本出了问题,有一个创建JVM的C ++文件: #include <jni.h> #include <iost ...

  2. [20180630]truncate table的另类恢复2.txt

    [20180630]truncate table的另类恢复2.txt --//上个星期做了truncate table的另类恢复,通过修改数据块的段号,再通过rowid定位收集数据,达到修复的目的.- ...

  3. postgresql-JSON使用

    json,jsonb区别 json和jsonb,而两者唯一的区别在于效率,json是对输入的完整拷贝,使用时再去解析,所以它会保留输入的空格,重复键以及顺序等.而jsonb是解析输入后保存的二进制,它 ...

  4. 深入 kernel panic 流程【转】

    一.前言 我们在项目开发过程中,很多时候会出现由于某种原因经常会导致手机系统死机重启的情况(重启分Android重启跟kernel重启,而我们这里只讨论kernel重启也就是 kernel panic ...

  5. WCF REST模式下的UriTemplate路径问题

    问题:在WCF4.0中,用UriTemplate进行表明路径参数的时候会出现问题 1.创建的项目是Service.Interface[4.0]和Service[4.0]还有Client[4.0] 2. ...

  6. Spring boot 之 dubbo 无xml 简单入门

    Dubbo简介 Dubbo框架设计一共划分了10个层,而最上面的Service层是留给实际想要使用Dubbo开发分布式服务的开发者实现业务逻辑的接口层.图中左边淡蓝背景的为服务消费方使用的接口,右边淡 ...

  7. 4.93Python数据类型之(8)集合

    目录 目录 前言 (一)基本概念 ==1.1有序于无序== ==1.2是否随机访问== ==1.3重复性== ==1.4可变与不可变的集合== (二)集合的增删改查 ==2.1集合的增加== ==2. ...

  8. 17秋 软件工程 团队第五次作业 Alpha Scrum3

    17秋 软件工程 团队第五次作业 Alpha Scrum3 今日完成的任务 杰麟:java后端学习: 世强:Android的部门基础信息模块的信息显示和对接后台: 港晨:后台管理登陆界面ui设计: 树 ...

  9. leetcode 395. Longest Substring with At Least K Repeating Characters(高质量题)

    只能说还是太菜,抄的网上大神的做法: idea: mask 的每一位代表该位字母够不够k次,够k次为0,不够为1 对于每一位将其视为起点,遍历至末尾,找到其最大满足子串T的下标max_idx,之后从m ...

  10. vue中使用baidushare分享到微信无法显示bug解决方案

    最近vue单页面项目中有个页面分享的功能需求,按以往经验,选择了百度开源的baidushare.js 经过一天的挣扎,终于弄清楚了分享到微信后无法显示的原因. 对比分析: 以往成功使用:另写了一个专门 ...