Luogu P2473 [SCOI2008]奖励关
比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖
由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方案总数,但是我们发现这样可能会导致一些不合法的状态也得到转移,因此我们考虑倒推
用\(f_{i,j}\)表示表示在第\(1\)轮到第\(i-1\)轮内宝物是否取过的状态为\(j\),第\(i\)轮到第\(k\)轮的最大期望得分,那么这样就可以通过倒推进行转移了。
具体转移的时候我们枚举所有的宝物限制,那么转移就很明显了
不过由于这里要求的是期望值,而每一次需要除以\(n\),最后的\(f_{1,0}\)即为答案
CODE
#include<cstdio>
#include<cctype>
using namespace std;
typedef double DB;
const int N=16,INF=-1e9;
int n,p[N],m,s[N],x,tot;
DB f[105][(1<<N)+5];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline int calc(int x)
{
int res=0; while (x) res+=x&1,x>>=1; return res;
}
inline DB max(DB a,DB b)
{
return a>b?a:b;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(m); read(n); tot=(1<<n)-1;
for (i=0;i<n;++i)
{
read(p[i]); read(x);
while (x) s[i]|=(1<<x-1),read(x);
}
for (i=m;i>=1;--i)
for (j=0;j<=tot;++j)
{
for (k=0;k<n;++k)
if ((s[k]&j)==s[k]) f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<k)]+p[k]); else f[i][j]+=f[i+1][j];
f[i][j]=(DB)f[i][j]/n;
}
return printf("%.6lf",f[1][0]),0;
}
Luogu P2473 [SCOI2008]奖励关的更多相关文章
- LG P2473 [SCOI2008]奖励关
题目链接:P2473 [SCOI2008]奖励关 题意:有n个宝物 每次等概率抛出其中之一一共抛出k次每个宝物有一个价值 和一个前提集合只有集齐了集合中的所有宝物 才可以领取这个宝物 范围:1 < ...
- P2473 [SCOI2008]奖励关(期望)
P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f ...
- 洛谷 P2473 [SCOI2008]奖励关 解题报告
P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝 ...
- 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)
题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...
- P2473 [SCOI2008]奖励关
思路 n<=15,所以状压 因为求期望,所以采用逆推的思路,设\(f[i][S]\)表示1~i的宝物获得情况是S,i+1~k的期望 状态转移是当k可以取时,\(f[i][S]+=max(f[i+ ...
- 洛谷P2473 [SCOI2008]奖励关(期望+状压)
传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...
- 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )
题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...
- 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】
P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...
- 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望
[BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...
随机推荐
- (后台)Java:对double值进行四舍五入,保留两位小数的几种方法
mport java.text.DecimalFormat; DecimalFormat df = new DecimalFormat("######0.00"); double ...
- Python中识别DataFrame中的nan
# 识别python中DataFrame中的nanfor i in pfsj.index: if type(pfsj.loc[i]['WZML']) == float: print('float va ...
- HDU ACM 1879 继续畅通工程
继续畅通工程 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- Android (checkBox)
1.使用 setOnCheckedChangeListener()方法对checkBox进行事件监听 2.重写方法 public void onCheckedChanged(CompoundButto ...
- logstash之input、codec学习
Logstash最强大的功能在于丰富的过滤器插件.此过滤器提供的并不单单是过滤的功能,还可以对进入过滤器的原始数据进行复杂的逻辑处理.甚至添加独特的事件到后续流程中. 1.logstash基本语法组成 ...
- git版本控制工具基本用法讲解(转)
一.安装Git 在linux系统使用非常方便,只需要打开shell界面,并输入: ? 1 sudo apt-get install git-core 按下回车后输入密码,即可完成Git的安装.但我们可 ...
- Python3编写网络爬虫07-基本解析库pyquery的使用
三.pyquery 简介:同样是一个强大的网页解析工具 它提供了和jQuery类似的语法来解析HTML文档,支持CSS选择器,使用非常方便 安装: pip install pyquery 验证: im ...
- 【Android自动化】测试android手机唤醒性能测试
# -*- coding:utf-8 -*- import time import os import common.common from common.getconfigs import GetC ...
- CyclicBarrier源码解读
1. 简介 JUC中的CyclicBarrier提供了一种多线程间的同步机制,可以让多个线程在barrier等待其它线程到达barrier.正如其名CyclicBarrier含义就是可以循环使用的屏障 ...
- visual studio code前端插件及常用快捷键【转】
通用插件 HTML Snippets 超级实用且初级的 H5代码片段以及提示 HTML CSS Support 让 html 标签上写class 智能提示当前项目所支持的样式新版已经支持scss文件检 ...