唯一ID算法之:snowflake(Java版本)
Twitter开源的算法,简单易用。
/**
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeIdWorker { // ==============================Fields===========================================
/** 开始时间截 (2015-01-01) */
private final long twepoch = 1420041600000L; /** 机器id所占的位数 */
private final long workerIdBits = 5L; /** 数据标识id所占的位数 */
private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */
private final long sequenceBits = 12L; /** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */
private long workerId; /** 数据中心ID(0~31) */
private long datacenterId; /** 毫秒内序列(0~4095) */
private long sequence = 0L; /** 上次生成ID的时间截 */
private long lastTimestamp = -1L; //==============================Constructors=====================================
/**
* 构造函数
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < ) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < ) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} // ==============================Methods==========================================
/**
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} //如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + ) & sequenceMask;
//毫秒内序列溢出
if (sequence == ) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
} //上次生成ID的时间截
lastTimestamp = timestamp; long l0 = timestamp - twepoch;
System.out.println("=========================print each convert");
System.out.println(l0);
long l1 = l0 << timestampLeftShift;
System.out.println(l1);
long l2 = datacenterId << datacenterIdShift;
System.out.println(l2);
long l3 = workerId << workerIdShift;
System.out.println(l3);
System.out.println(sequence);
System.out.println(l1 +"|" + l2+"="+(l1 | l2));
System.out.println(l1 +"|" + l2+"|"+l3+"="+(l1 | l2|l3));
System.out.println("=========================print end");
//移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
} /**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} /**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
} //==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(, );
for (int i = ; i < ; i++) {
try {
Thread.sleep();
} catch (InterruptedException e) {
e.printStackTrace();
}
long id = idWorker.nextId();
System.out.println(id);
}
}
}
PS:顺便复习一下位运算
public static void main(String[] args) {
int a = ; /* 60 = 0011 1100 */
int b = ; /* 13 = 0000 1101 */
int c = ;
c = a & b; /* 12 = 0000 1100 */
System.out.println("a & b = " + c ); c = a | b; /* 61 = 0011 1101 */
System.out.println("a | b = " + c ); c = a ^ b; /* 49 = 0011 0001 */
System.out.println("a ^ b = " + c ); c = ~a; /*-61 = 1100 0011 */
System.out.println("~a = " + c ); c = a << ; /* 240 = 1111 0000 */
System.out.println("a << 2 = " + c ); c = a >> ; /* 15 = 1111 */
System.out.println("a >> 2 = " + c ); c = a >>> ; /* 15 = 0000 1111 */
System.out.println("a >>> 2 = " + c );
}
唯一ID算法之:snowflake(Java版本)的更多相关文章
- 唯一id算法
https://blog.csdn.net/guodongcc322/article/details/55211273 https://blog.csdn.net/weixin_36751895/ar ...
- Twitter的分布式自增ID算法snowflake (Java版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- 微博短链接的生成算法(Java版本)
最近看到微博的短链接真是很火啊,新浪.腾讯.搜狐等微博网站都加入了短链接的功能.之所以要是使用短链接,主要是因为微博只允许发140 字,如果链接地址太长的话,那么发送的字数将大大减少.短链接的主要职责 ...
- 根据twitter的snowflake算法生成唯一ID
C#版本 /// <summary> /// 根据twitter的snowflake算法生成唯一ID /// snowflake算法 64 位 /// 0---0000000000 000 ...
- 分布式唯一id:snowflake算法思考
匠心零度 转载请注明原创出处,谢谢! 缘起 为什么会突然谈到分布式唯一id呢?原因是最近在准备使用RocketMQ,看看官网介绍: 一句话,消息可能会重复,所以消费端需要做幂等.为什么消息会重复后续R ...
- 分布式系统-主键唯一id,订单编号生成-雪花算法-SnowFlake
分布式系统下 我们每台设备(分布式系统-独立的应用空间-或者docker环境) * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作 ...
- C# 根据twitter的snowflake算法生成唯一ID
C# 版算法: using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...
- 分布式自增ID算法snowflake (Java版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- 【Java】分布式自增ID算法---雪花算法 (snowflake,Java版)
一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增 ...
随机推荐
- c++基本数据类型及其取值范围
#include<iostream> #include<string> #include <limits> using namespace std; int mai ...
- [ 高危 ] my存在sql注入
rank和金币这算RMB为700 这算一个手机端的网站,往往手机端的功能和PC端的功能可能代码写的不一样,接口不一. 登录后,在xxx.maoyan.com/authcenter/wxpay/m?ap ...
- async函数
async函数的实现原理,就是将Generator函数和自动执行器,包装在一个函数里.async函数返回Promise对象,async函数的return值是then方法的参数,await后跟Promi ...
- express框架中如何只执行一次res响应操作
在做东西时候遇到一个可能会重复输出res.json的地方,重复输出会产生Error:Cannot set header after they are sent. Node.js不像c++里可以直接通过 ...
- java发送邮件高级篇
package com.xiets.javamaildemo; import java.util.Date; import java.util.Properties; import javax.act ...
- 通过Obfuscated ssh避免时不时ssh连接不畅的问题【转】
众所周知的原因,为了能流畅的使用google.使用某些“不存在”的网站,我们一般都是需要通过某些不方便光明正大说明使用用途的技术.比如通过ssh tunnel,这是最简单的,也是用得最多的. 不过,这 ...
- Java 装饰模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述装饰(Decorator)模式的: 装饰模式又名包装(Wrapper)模式.装饰模式以对客户端透明的方式扩展对象的功能,是继承关系的一个替 ...
- Java 构造器 遇到多个构造器时要考虑用构建器
静态工厂和构造器有个共同的局限性:它们都不能很好地扩展到大量的可选参数. 当一个类中有若干个必选属性和多个可选属性时,采用重叠构造器模式.JavaBeans模式或者Builder模式,但各有优劣. 当 ...
- unity windowEditor平台下鼠标左键控制摄像机的视角
工作的原因,今天就只写了unity下的鼠标左键控制摄像机的视角左右上下调节:明天,补齐.[有诸多参考,着实是需要多多加油的] using System.Collections; using Syste ...
- vmware提示请卸载干净再重新安装的解决办法
结论:删掉 HKEY_LOCAL_MACHINE\\SOFTWARE\Wow6432Node\VMware, Inc. 就可以了. ----------------------------- ...