转自:https://blog.csdn.net/qq_30815237/article/details/87903024


1、plt.rcParams

plt(matplotlib.pyplot)使用rc配置文件来自定义图形的各种默认属性,称之为“rc配置”或“rc参数”。
通过rc参数可以修改默认的属性,包括窗体大小、每英寸的点数、线条宽度、颜色、样式、坐标轴、坐标和网络属性、文本、字体等。rc参数存储在字典变量中,通过字典的方式进行访问。

代码:

import numpy as np
import matplotlib.pyplot as plt
###%matplotlib inline #jupyter可以用,这样就不用plt.show() #生成数据
x = np.linspace(0, 4*np.pi)
y = np.sin(x)
#设置rc参数显示中文标题
#设置字体为SimHei显示中文
plt.rcParams['font.sans-serif'] = 'SimHei'
#设置正常显示字符
plt.rcParams['axes.unicode_minus'] = False
plt.title('sin曲线')
#设置线条样式
plt.rcParams['lines.linestyle'] = '-.'
#设置线条宽度
plt.rcParams['lines.linewidth'] = 3
#绘制sin曲线
plt.plot(x, y, label='$sin(x)$') plt.savefig('sin.png')
plt.show()

  

参数:

plt.rcParams['savefig.dpi'] = 300 #图片像素
plt.rcParams['figure.dpi'] = 300 #分辨率
plt.savefig(‘plot123_2.png’, dpi=200)#指定分辨率
# 默认的像素:[6.0,4.0],分辨率为100,图片尺寸为 600&400
# 指定dpi=200,图片尺寸为 1200*800
# 指定dpi=300,图片尺寸为 1800*1200 plt.rcParams['figure.figsize'] = (8.0, 4.0) # 图像显示大小
plt.rcParams['image.interpolation'] = 'nearest' # 最近邻差值: 像素为正方形
#Interpolation/resampling即插值,是一种图像处理方法,它可以为数码图像增加或减少象素的数目。 plt.rcParams['image.cmap'] = 'gray' # 使用灰度输出而不是彩色输出 plt.axis('off') #打印图片的时候不显示坐标轴

 

from:https://blog.csdn.net/liangzuojiayi/article/details/78184687

更详细的配置参见:https://my.oschina.net/swuly302/blog/94805

2、matshow函数

这是一个绘制矩阵的函数:matplotlib.pyplot.matshow(A, fignum=None, **kwargs)

A是绘制的矩阵,一个矩阵元素对应一个图像像素。

例如:plt.matshow(Mat,  cmap=plt.cm.gray),cmap代表一种颜色映射方式。

实例:

plt.plot(A, "r-+", linewidth=2, label="train")
plt.plot(B, "b-", linewidth=3, label="val")
plt.legend(loc="upper right", fontsize=14) # 设置位置
plt.xlabel("Training set size", fontsize=14) # 标签
plt.ylabel("RMSE", fontsize=14)
plt.axis([0, 80, 0, 3])#表示要显示图形的范围
plt.xticks(np.arange(0, 81, step=20))#设置刻度
plt.yticks(np.arange(0, 4, step=1))

Axes - Subplot - Axis 之间到底是个什么关系

用matplotlib.pyplot绘图需要知道以下几个概念:

画图板/画布:这是一个基础载体,类似实际的画图板,用pyplot.figure()函数创建,程序中允许创建多个画图板,具体操作的画板遵循就近原则(操作是在最近一次调用的画图板上实现),缺省条件下内部默认调用pyplot.figure(1)。

图形区/绘图区:用来绘图的实际区域,一般不直接获取,直接设定方式为pyplot.axes([x, y, w, h]),即axes函数直接确定了该区域在画图板/画布中的位置为x,y 尺寸为w,h

标签区:用来展示图形相关标签的地方,一般不直接设定(未仔细研究过),该区域根据图形区进行扩展,与该区域有关联的函数是pyplot.xlabel()、pyplot.ylabel()、pyplot.title()等

fig = plt.figure()
plt.show() ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)

 

用画板和画纸来做比喻的话,figure就好像是画板,是画纸的载体, 但是具体画画等操作是在画纸上完成的。 在pyplot中,画纸的概念对应的就是Axes/Subplot。

 

对比:

figure (1) VS figure()
      figure()操作就是创建或者调用画图板,缺省情况下系统会创建figure(1)作为画图板。使用时遵循就近原则,所有画图操作是在最近一次调用的画图板上实现。

axes() VS subplot()
      pyplot.axes([x, y, w, h])是用来在画图板上确认图形区的位置和大小的函数,x,y表示图形区左下角相对于画图板的坐标,w,h表示图形区的宽高。(缺省时该操作在figure(1)上操作)

pyplot.subplot(abc)本质也是用来确认图形区在画图板上位置大小的函数,区别是该函数将画图板按a行b列等分,然后逐行编号,并选择编号为c的区域作为图形区用来绘图。这是一个axes()操作的高级封装,方便用户使用。subplot(233)表示2行3列的第3个位置(即,第1行第三个区域)

同时,pyplot.show()实际展示的区域是画图板上所有图形区的最小包围区,不是整个画图板,即如果仅仅调用了subplot(224)结果只展示右下角的4号区域,而不是1、2、3、4都展示,因此会存在一定的错觉。

axes() VS axis()
       axes([x, y, w, h])用来设定图形区;

axis([x_left, x_right, y_bottom, y_top])是用来设置所绘制图形的视窗大小的,表示直接展示的图形是需要满足参数中范围的值,直观表现是绘图区实际展示的坐标范围。

注:axis作用的图形区依旧遵守就近原则。

subplot() VS plot()
       subplot用来生成图形区;

plot是实际使用的绘图函数,类似的函数还有hist等,plot操作遵守就近原则,即作用在最近一次使用的图形区上。

from:https://blog.csdn.net/JasonZhu_csdn/article/details/85860963
官网:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html


转自:https://wangyeming.github.io/2018/11/07/matplot-cmap/

画图离不开色彩--说说matplot的cmap

一张好看的图,离不开各种各样的颜色。在matplot中,有一个cmap的概念,通过cmap,我们可以很方便的给多组数据自动分配色彩,画出很好看的图。这篇文章就简单介绍下cmap的概念和用法。

cmap是什么

cmap也就是colormap,可以理解为接受一个数值,输出一个指定的颜色的字典。下面这张图就展示了常见的一些cmap。

可以点击matplot cmap这里,里面有一个demo示例,会画一个包含matplot中所有cmap的图。

这里常见的cmap有:

纯色渐变系列:

比如说画灰度图的话,可以选择Greys这个cmap。

如何在画图中使用cmap

import matplotlib.pyplot as plt
import numpy as np n = 1024 # data size
X = np.random.normal(0, 1, n) # 每一个点的X值,平均数是0,方差是1
Y = np.random.normal(0, 1, n) # 每一个点的Y值 # 这里我们每个点的颜色和该点的X值+Y值的和相关
color = X + Y # 使用我们上面说的灰度图
cmap = plt.get_cmap('Greys')
# cmap = plt.cm.Greys #也可以这么写
# 利用normlize来标准化颜色的值
norm = plt.Normalize(vmin=-3, vmax=3) # 散点图
plt.scatter(X, Y, s=75, alpha=0.5, c=color, cmap=cmap, norm=norm) plt.xlim(-1.5, 1.5)
plt.xticks(()) # ignore xticks
plt.ylim(-1.5, 1.5)
plt.yticks(()) # ignore yticks plt.show()

  

其中,我们用到了matplotlib.colors.Normalize类,比如说我们的颜色对应的值取值范围在[-10, 10]之间和[-1,1]之间肯定是不能套用同一个转换标准的,通过Normalize标准化,我们可以很方便的将我们的实际值合适的分布到color map上。

我们讲colormap换成

cmap = plt.get_cmap('Spectral')

  

画出来的图的颜色就是下面这样的:

 

[转]matplotlib - plt.rcParams、matshow/cmap/坐标轴设置的更多相关文章

  1. matplotlib:plt.rcParams设置画图的分辨率,大小等信息

    主要作用是设置画的图的分辨率,大小等信息 plt.rcParams['figure.figsize'] = (8.0, 4.0) # 设置figure_size尺寸 plt.rcParams['ima ...

  2. Matplotlib中plt.rcParams用法(设置图像细节)

    import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap %mat ...

  3. plt.rcParams[]

    plt.rcParams[] pylot使用rc配置文件来自定义图形的各种默认属性,称之为rc配置或rc参数.通过rc参数可以修改默认的属性,包括窗体大小.每英寸的点数.线条宽度.颜色.样式.坐标轴. ...

  4. matplotlib坐标轴设置-【老鱼学matplotlib】

    我们可以对坐标轴进行设置,设置坐标轴的范围,设置坐标轴上的文字描述等. 基本用法 例如: import numpy as np import pandas as pd import matplotli ...

  5. matplotlib坐标轴设置续-【老鱼学matplotlib】

    本次会讲解如何修改坐标轴的位置. 要修改轴,就要先得到当前轴:plt.gca(),这个函数名挺怪的,其实是如下英文字母的首字母:get current axis,也就是得到当前的坐标轴. import ...

  6. 使用matplotlib的示例:调整字体-设置colormap和colorbar

    使用matplotlib的示例:调整字体-设置colormap和colorbar # -*- coding: utf-8 -*- #********************************** ...

  7. 使用matplotlib的示例:调整字体-设置刻度、坐标、colormap和colorbar等

    使用matplotlib的示例:调整字体-设置刻度.坐标.colormap和colorbar等 2013-08-09 19:04 27805人阅读 评论(1) 收藏 举报  分类: Python(71 ...

  8. python3绘图示例6-2(基于matplotlib,绘图流程介绍及设置等)

    #!/usr/bin/env python# -*- coding:utf-8 -*- import os import numpy as npimport matplotlib as mpltfro ...

  9. python3绘图示例6-1(基于matplotlib,绘图流程介绍及设置等)

    #!/usr/bin/env python# -*- coding:utf-8 -*- import os import pylab as pyimport numpy as npfrom matpl ...

随机推荐

  1. 【redis】7、redis用法总结

    Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API. 一.redis优点 Redis支持数据的持久化,可以将内存中 ...

  2. java_单词长度

    题目内容: 你的程序要读入一行文本,其中以空格分隔为若干个单词,以‘.’结束.你要输出这行文本中每个单词的长度.这里的单词与语言无关,可以包括各种符号,比如“it's”算一个单词,长度为4.注意,行中 ...

  3. blfs(systemv版本)学习笔记-编译安装sudo并创建普通用户配置sudo权限

    我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! blfs书中sudo的安装配置章节:http://www.linuxfromscratch.org/blfs/view/8.3/ ...

  4. CSS 中的 BFC,IFC,GFC和FFC

    原文网址:http://www.cnblogs.com/dingyufenglian/p/4845477.html What‘s FC? 一定不是KFC,FC的全称是:Formatting Conte ...

  5. Django&Flask区别

    Flask Flask 本身只有一个内核,几乎所有的功能都需要用第三方的扩展来实现. Flask 没有默认使用的数据库,默认依赖两个外部库:Jinja2 模板引擎和 WSGI 工具箱(采用的时 Wer ...

  6. HDU 6138 Fleet of the Eternal Throne(后缀自动机)

    题意 题目链接 Sol 真是狗血,被疯狂卡常的原因竟是 我们考虑暴力枚举每个串的前缀,看他能在\(x, y\)的后缀自动机中走多少步,对两者取个min即可 复杂度\(O(T 10^5 M)\)(好假啊 ...

  7. 【读书笔记】iOS-Apple的移动设备硬件

    本书中有一个关键观点是:“硬件并不是特别重要,用户体验才是真正的杀手级应用.“尽管如此,多了解一些你使用的硬件的相关知识,对于整个项目来说是必备的,而对于设计和开发高质量的作品来说敢是不可或缺的. 人 ...

  8. 长文本溢出显示省略号(…) text-overflow: ellipsis

    text-overflow 属性规定当文本溢出包含元素时发生的事情. 默认值: clip 继承性: no 版本: CSS3 JavaScript 语法: object .style.textOverf ...

  9. loadrunner 运行脚本-Run-time Settings->General->Additional attributes设置

    运行脚本-Run-time Settings->General->Additional attributes设置 by:授客 QQ:1033553122 作用说明 为Vuser脚本提供额外 ...

  10. JQuery请求数据的方式

    /*$.ajax常用的几个参数 // 1.url:要求为String类型的参数,(默认为当前页地址)发送请求的地址. // 2.type:要求为String类型的参数,请求方式(post或get)默认 ...