读李宏毅《一天看懂深度学习》——Deep Learning Tutorial
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈。
我也放到我的盘里啦:
链接:https://pan.baidu.com/s/13xTs4qJKv2Ere4CscCQeDw 密码:e2qg
PPT整体结构如下:
Lecture I:概论
1.介绍深度学习
深度学习过程大体分为三个步骤:(1)定义方法(2)判断方法优劣(3)选出最佳方法
(1)定义方法——神经网络
深度学习可以理解为多层的神经网络。神经网络的思想来源于对于人脑的生理上的研究,人脑由数亿个神经元组成,神经元通过轴突互相连接通信。神经网络和人脑类似,存在多个层级(layer),每个层级都有多个节点(神经元neuron),层级和层级之间相互连接(轴突),最终输出结果。
对于神经网络的计算能力可以理解为通过一层层Layer的计算归纳,逐步的将抽象的原始数据变的具体。以图片识别为例,输入是一个个像素点,经过每层神经网络,逐步变化成为线、面、对象的概念,然后机器有能力能够识别出来。
(2)判断方法优劣
首先准备待训练的数据和它们的标签,最终目标是由训练数据学习而来的。
我们用学习出来的参数对测试数据进行计算,得出对应的预测(y)然后和真实的测试数据的目标值(t)进行比对,y和t之间的差距往往就是Loss。
我们评估一个方法的好坏,就是看这个Loss是不是尽可能小。
(3)选出最佳方法
获得最佳的学习是采用梯度下降算法,作者也提到梯度下降算法存在局部最优解的问题,即找到一条最“陡峭”的路下山。人们往往认为机器无所不能,实际上更像是在一个地图上面拓荒,对周边一无所知。
神经网络计算梯度的算法是反向传播算法,简称BP。
2.Why Deep?
很显然,神经网络的参数越多,预测能力就越好。那么如果是同样的参数情况下,为什么层级较多的表现会更好呢?
作者认为深度网络可以带来模块化的好处,模块化是从数据中自动学习的。随着网络的层级变多,神经网络会将像素元素逐渐归纳出一些基本的特征,进而变成纹理,进而变成对象。
3.Keras
TensorFlow or Theano的接口。
Lecture II:训练方法
经过神经网络训练之后会发现两种问题:
1.训练结果很差→重新选择训练方式
2.测试结果很差→(往往由于过拟合导致)重新定义方法
1.优化训练方法的手段:
(1)Choosing proper loss
选择合适的Loss function,使用Cross Entropy(交叉熵)效果要优于Mean Square Error(均方差)。
(2)Mini-batch
每次训练使用少量数据而不是全量数据效率更高。
(3)New activation function
使用ReLU(线性整流函数)替代Sigmoid可以解决梯度消失的问题,可以训练更深的神经网络。网络不是越深越好。
(4)Adaptive Learning Rate
可以随着迭代不断自我调整,提高学习效率。
(5)Momentum
可以一定程度上避免陷入局部最低点的问题。
2.避免过度拟合的方法
增加数据量是最简单的方法:创造更多的数据、给数据加噪声。
(1)Early Stopping
使用cross validation的方式,不断对validation data进行检验,一旦发现预测精度下降则停止。
(2)Regularization(Weight Decay)
参数正则化的一种方式。删除无用的联系。
(3)Dropout
通过随机去掉一些节点的连接达到改变网络形式,所以会产生出多种网络形态,然后汇集得到一个最佳结果。
(4)Network Structure
如CNN等其他形态的网络。
Lecture III: 神经网络的变体
1. 卷积神经网络(CNN)
通常情况下,一个CNN包含多次的卷积、池化,然后Flatten,最终再通过一个深度神经网络进行学习预测。CNN在图像、语音识别取得非常好的成绩,核心的想法在于一些物体的特征往往可以提取出来,并且可能出现在图片的任何位置,而且通过卷积、池化可以大大减少输入数据,加快训练效率。
2. 递归神经网络(RNN)
RNN的想法是可以将hidden layer的数据存储下来,然后作为输入给下一个网络学习。这种网络的想法可以解决自然语言中前后词语是存在关联性的,所以RNN可以把这些关联性放到网络中进行学习。
Lecture IV: Next Wave
读李宏毅《一天看懂深度学习》——Deep Learning Tutorial的更多相关文章
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 机器学习——深度学习(Deep Learning)
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key W ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 转:浅谈深度学习(Deep Learning)的基本思想和方法
浅谈深度学习(Deep Learning)的基本思想和方法 参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep ...
- (转)深度学习(Deep Learning, DL)的相关资料总结
from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革 ...
- (转)机器学习——深度学习(Deep Learning)
from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立 ...
- (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ
- 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
[重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .
随机推荐
- vs添加github代码库
1.安装git for windows 2.在vs中工具->扩展和更新,安装github extension 3.在项目中右键,添加源码到git,之后配置git,然后选择同步或者commit即可
- 使用maven搭建springMVC开发环境
1.引入框架所需的包,pom.xml文件中添加如下配置: <dependency> <groupId>org.springframework</groupId> & ...
- JMeter上架标的(yyb-csg)
yyb-csg 1.登录时一直提示用户名不能为空,可是明明已经传值了呀 解决:添加cookie管理器 2.怎么获取到待受理的项目, 在python脚本的实现过程中发现,在平台受理一步中传的lid值就是 ...
- java求最大公约数,和最小公倍数
import java.util.Scanner; public class Test { public static void main(String[] args) { Scanner sc = ...
- ch01 PHP开篇
ch01 PHP开篇 1.1启蒙知识 思考:WAMP是什么?:集成开发环境 [Windows+Apache服务器+MySQL数据库+PHP编程] 1.1.1 站点 将网站所有相关素材都放到一个文件夹中 ...
- 为archlinux终端ls不同类型文件设置不同显示颜色
title: 为archlinux终端ls不同类型文件设置不同显示颜色 date: 2017-11-13 20:53:55 tags: linux categories: linux archlinu ...
- json字符串 转Java List 简单方法
JSONArray jsonArr = JSONArray.fromObject(jsonStr); List<Map<String,Object>> listMap = (L ...
- kmp匹配详解
字符串算法都是毒瘤的 一.kmp算法的用处 在文本串中查找模式串的位置,数量 文本串:要在这个字符串查找模式串 模式串:在文本串中查找的字符串 全是废话 二.kmp算法的思想 话说kmp好像是3个发明 ...
- svn版本备份和恢复注意事项
转帖的,因为我经常要用到,所以也在我的博客上记录一下: 注意:备份不备份日志,你想备份日志就要单独在客户端备了,具体步骤百度上都有 svn备份常用命令1.完全备份和增量备份svn.svnadmin ...
- tomcat下面web应用发布路径配置 ( 即虚拟目录配置 )
https://blog.csdn.net/AnQ17/article/details/52122236