思路

多项式除法板子

多项式除法

给出\(A(x)\)和\(B(x)\),求一个\(n-m\)次的多项式\(D(x)\),一个\(m-1\)次多项式\(R(x)\),满足

\[A(x)=B(x)D(x)+R(x)
\]

定义\(D^R(x)\)为多项式\(D(x)\)系数反转的结果,可证\(D^R(x)=x^nD(\frac{1}{x})\)

所以

\[\begin{align}&A(x)=B(x)D(x)+R(x)\\&A(\frac{1}{x})=B(\frac{1}{x})D(\frac{1}{x})+R(\frac{1}{x})\\&x^nA(\frac{1}{x})=x^nB(\frac{1}{x})D(\frac{1}{x})+x^nR(\frac{1}{x})\\&A^R(x)=B^R(x)D^R(x)+x^{n-m+1}R^R(x)\end{align}
\]

放到模\(x^{n-m+1}\)意义下

就消去了\(R(x)\)的影响,然后上求逆就行了

注意反转D系数时候只反转0~n-m项系数

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const int MAXN = 300000;
const int G = 3;
const int invG = 332748118;
const int MOD = 998244353;
int n,m;
struct Poly{
int t;//次数界
int data[MAXN];
Poly(){}
Poly(int x,int val[]){
for(int i=0;i<=x;i++)
data[i]=val[i];
}
};
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void rever(Poly &a){
for(int i=0,j=a.t;i<j;i++,j--){
swap(a.data[i],a.data[j]);
}
}
void save(Poly &a,int top){
for(int i=top+1;i<=a.t;i++)
a.data[i]=0;
a.t=top;
}
void output(Poly a){
putchar('\n');
printf("a.times=%lld\n",a.t);
putchar('\n');
for(int i=0;i<=a.t;i++)
printf("%lld ",a.data[i]);
putchar('\n');
putchar('\n');
}
void NTT(Poly &a,int opt,int n){//1 DFT 0 IDFT
int lim=0;
while((1<<(lim))<n)
lim++;
n=(1<<lim);
for(int i=0;i<n;i++){
int t=0;
for(int j=0;j<lim;j++)
if((i>>j)&1)
t|=(1<<(lim-j-1));
if(i<t)
swap(a.data[i],a.data[t]);
}
for(int i=2;i<=n;i<<=1){
int len=i/2;
int tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<j+len;k++){
int t=(1LL*a.data[k+len]*arr)%MOD;
a.data[k+len]=(a.data[k]-t+MOD)%MOD;
a.data[k]=(a.data[k]+t)%MOD;
arr=(1LL*arr*tmp)%MOD;
}
}
}
if(!opt){
int invN = pow(n,MOD-2);
for(int i=0;i<n;i++){
a.data[i]=(a.data[i]*invN)%MOD;
}
}
}
void mul(Poly &a,Poly b){//a=a*b
int num=(a.t+b.t),lim=0;
while((1<<(lim))<=((num+2)))
lim++;
lim=(1<<lim);
NTT(a,1,lim);
NTT(b,1,lim);
for(int i=0;i<lim;i++)
a.data[i]=(1LL*a.data[i]*b.data[i])%MOD;
NTT(a,0,lim);
a.t=num;
for(int i=num+1;i<lim;i++)
a.data[i]=0;
}
void Inv(Poly a,Poly &inv,int dep,int &len){//
if(dep==1){
inv.data[0]=pow(a.data[0],MOD-2);
inv.t=dep-1;
return;
}
Inv(a,inv,(dep+1)>>1,len);
static Poly tmp;
while((dep<<1)>len)
len<<=1;
for(int i=0;i<dep;i++)
tmp.data[i]=a.data[i];
for(int i=dep;i<len;i++)
tmp.data[i]=0;
NTT(tmp,1,len);
NTT(inv,1,len);
for(int i=0;i<len;i++)
inv.data[i]=1LL*inv.data[i]*((2-1LL*inv.data[i]*tmp.data[i])%MOD+MOD)%MOD;
NTT(inv,0,len);
for(int i=dep;i<len;i++)
inv.data[i]=0;
inv.t=dep-1;
}
void div(Poly a,Poly b,Poly &D,Poly &R){
static Poly tmp1,tmp2;
int Up=a.t-b.t+1,midlen=1;
tmp1=b;
rever(tmp1);
Inv(tmp1,tmp2,Up,midlen);
tmp1=a;
rever(tmp1);
mul(tmp2,tmp1);
save(tmp2,n-m);
rever(tmp2);
D=tmp2;
mul(tmp2,b);
for(int i=0;i<b.t;i++)
R.data[i]=(a.data[i]-tmp2.data[i]+MOD)%MOD;
R.t=b.t-1;
}
Poly a,b,D,R;
signed main(){
scanf("%lld %lld",&n,&m);
for(int i=0;i<=n;i++)scanf("%lld",&a.data[i]);
a.t=n;
for(int i=0;i<=m;i++)
scanf("%lld",&b.data[i]);
b.t=m;
div(a,b,D,R);
for(int i=0;i<=D.t;i++)
printf("%lld ",D.data[i]);
putchar('\n');
for(int i=0;i<=R.t;i++)
printf("%lld ",R.data[i]);
putchar('\n');
return 0;
}

P4512 【模板】多项式除法的更多相关文章

  1. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  2. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  3. [洛谷P4512]【模板】多项式除法

    题目大意:给定一个$n$次多项式$F(x)$和一个$m$次多项式$G(x)$,请求出多项式$Q(x),R(x)$,满足: 1. $Q(x)$次数为$n-m$,$R(x)$次数小于$m$2. $F(x) ...

  4. Re.多项式除法/取模

    前言 emmm又是暂无 前置 多项式求逆 多项式除法/取模目的 还是跟之前一样顾名思义] 给定一个多项式F(x),请求出多项式Q(x)和R(x),满足F(x)=Q(x)∗G(x)+R(x),R项数小于 ...

  5. xdoj-1211 (尧老师要教孩子解方程) :多项式除法

    想法: 1 由于所有a[i] 是不为0的整数 所以解x是整数 2 其次解是an的约数 3 分解a[n] 用多项式除法判断约数是否为整式的解 #include<cstdio> #includ ...

  6. 【Codechef】Random Number Generator(多项式除法)

    题解 前置技能 1.多项式求逆 求\(f(x)\*g(x) \equiv 1 \pmod {x^{t}}\) 我们在t == 1时,有\(f[0] = frac{1}{g[0]}\) 之后呢,我们倍增 ...

  7. luogu P4512 多项式除法 (模板题、FFT、多项式求逆)

    手动博客搬家: 本文发表于20181206 14:42:53, 原地址https://blog.csdn.net/suncongbo/article/details/84853342 题目链接: ht ...

  8. 题解 P4512 【【模板】多项式除法】

    题目地址 前言 原理有大佬写了 所以蒟蒻只讲下本题的代码细节 我看懂的大佬博客:博客地址 因为可能知道了大致的步骤还有很多细的地方不理解导致写的时候要花很久并且看到大佬们好像都是用递归写的希望能有帮助 ...

  9. 2019.01.02 洛谷P4512 【模板】多项式除法

    传送门 解析 代码: #include<bits/stdc++.h> #define ri register int using namespace std; typedef long l ...

随机推荐

  1. Date类型与字符串之间的转换

    Java中Date类型与字符串转化   (一)Date与字符串的转化   Date.String.Timestamp之间的转换!   public static void main(String[]  ...

  2. Oracle 创建表 Create Table...

    一.创建表 主键约束primary key 约束条件,唯一且非空,一个表中只能有一个主键:有多个字段联合作为主键时,合在一起唯一标识记录,叫做联合主键. 外键约束 foreign key 受另外一张表 ...

  3. python __all__

    它不仅在第一时间展现了模块的内容大纲,而且也更清晰的提供了外部访问接口. 若__all__的list中未定义,即便有实现也会找不到.

  4. java中的静态代理和动态代理

    1.动态代理的定义:为其他对象提供一个代理以控制对这个对象的访问 代理类主要负责委托类的预处理消息,过滤消息,把消息传给委托类以及消息事后处理 按照代理类的创建时期,代理类可以分为2种:静态代理类(在 ...

  5. 电子产品使用感受之———我用过的最昂贵的手机壳:otter box 和 Apple 原装清水壳的对比

    2014年9月27日,我买到了我所使用的第一部 iPhone — iPhone 5C 蓝色.今天,2019年3月2日,我手里拿的是iPhoneXR 蓝色,两款手机如出一辙的设计和手感,让我充满了无限的 ...

  6. bootstrap-treeview 中文开发手册

    官方文档URL:  https://www.npmjs.com/package/bootstrap-treeview 2017年11月21日10:45:10 演示:http://www.htmleaf ...

  7. ML.NET 0.10特性简介

    IDataView被单独作为一个类库包 IDataView组件为表格式数据提供了非常高效的处理方式,尤其是用于机器学习和高级分析应用.它被设计为可以高效地处理高维数据和大型数据集.并且也适合处理属于更 ...

  8. 解决url传中文参数问题

    项目中要做一个表格导出功能,用的是location.url传值给后台导出表格数据.由于传中文会出现乱码现象.故需要给参数转码,具体如下: 对于url要传的中文参数进行两次编码(注意是两次),即enco ...

  9. TCP/IP的分层管理

    网络基础TCP/IP 我们通常所使用的网络(包括互联网)均是在TCP/IP协议族的基础上运作的.HTTP属于它内部的一个子集 TCP/IP协议族按层次分为:应用层,传输层,网络层和数据链路层(更好的划 ...

  10. winfrom弹出窗口用timer控件控制倒计时20秒后关闭

    功能描述: 因为在程序退出时需要确认是否是误操作,所以加了密码输入的子窗体,子窗体在20秒内会自动关闭 代码如下: private int count; private void Form2_Load ...