机器人视觉中有一项重要人物就是从场景中提取物体的位置,姿态。图像处理算法借助Deep Learning 的东风已经在图像的物体标记领域耍的飞起了。而从三维场景中提取物体还有待研究。目前已有的思路是先提取关键点,再使用各种局部特征描述子对关键点进行描述,最后与待检测物体进行比对,得到点-点的匹配。个别文章在之后还采取了ICP对匹配结果进行优化。

 对于缺乏表面纹理信息,或局部曲率变化很小,或点云本身就非常稀疏的物体,采用局部特征描述子很难有效的提取到匹配对。所以就有了所谓基于Point Pair 的特征,该特征使用了一些全局的信息来进行匹配,更神奇的是,最终的位姿估计结果并不会陷入局部最小值。详细可参见论文:Model globally, match locally: Efficient and robust 3D object recognition. 与 Going further with point pair features。SLAM的重要研究方向object based Slam 也声称使用了Point Pair Feature进行匹配。

为了更好的理解这种方法,而在pcl中也没有找到现成的算法,所以我自己用matlab实现了一遍。

算法的思想很简单:

0、ppf 特征为[d,<d,n1>,<d,n2>,<n1,n2>].

1、针对目标模型,在两两点之间构造点对特征F,如果有N个点,那么就有N*N个特征(说明此算法是O(N2)的),N*N个特征形成特征集F_Set

2、在场景中任意取1定点a,再任意取1动点b,构造ppf特征,并从F_set中寻找对应的,那么理想情况下,如果找到了完全匹配的特征,则可获得点云匹配的结果。

3、此算法是一种投票算法,每次匹配都能得到一个旋转角度,如果m个b都投票给了某一旋转角度则可认为匹配成功

这个算法最大的问题就是不停的采样会导致极大的计算量。不过算法本身确实可以匹配物体和场景。

ppf 特征的构建

 function obj = ppf(point1,point2)
d = point1.Location - point2.Location;
d_unit = d/norm(d);
apha1 = acos(point1.Normal*d_unit');
apha2 = acos(point2.Normal*d_unit');
apha3 = acos(point1.Normal*point2.Normal');
obj = [norm(d),apha1,apha2,apha3];
end

ppf 特征集的构建

 classdef modelFeatureSet < handle
%MODELFEATURESET 此处显示有关此类的摘要
% 此处显示详细说明 properties
FeatureTree
ModelPointCloud
Pairs
end methods
function obj = modelFeatureSet(pt)
obj.ModelPointCloud = copy(pt.removeInvalidPoints());
end
function growTree(self)
self.ModelPointCloud = pcdownsample(self.ModelPointCloud,'GridAverage',.);
pt_size = self.ModelPointCloud.Count;
idx = repmat(:pt_size,pt_size,);
tmp1 = reshape(idx,pt_size*pt_size,);
tmp2 = reshape(idx',pt_size*pt_size,1);
pairs = [tmp1,tmp2];
rnd = randseed(,,,,pt_size*pt_size);
pairs = pairs(rnd,:);
Features = zeros(size(pairs,),);
for i = :size(pairs,)
Features(i,:) = ppf(self.ModelPointCloud.select(pairs(i,)),...
self.ModelPointCloud.select(pairs(i,)));
end
self.FeatureTree = createns(Features);
self.Pairs = pairs;
end
end
end

三维计算机视觉 — 中层次视觉 — Point Pair Feature的更多相关文章

  1. 三维计算机视觉 —— 中层次视觉 —— RCNN Family

    RCNN是从图像中检测物体位置的方法,严格来讲不属于三维计算机视觉.但是这种方法却又非常非常重要,对三维物体的检测非常有启发,所以在这里做个总结. 1.RCNN - the original idea ...

  2. point pair feature在2D图像匹配中的应用

    point pair feature在2D图像匹配中的应用 point pair feature(ppf) @article{BertramDrost2010ModelGM, title={Model ...

  3. PCL — Point Pair Feature 中层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5971976.html 机器人视觉中有一项重要人物就是从场景中提取物体的位置,姿态.图像处理算法借助Deep Lea ...

  4. PCL—低层次视觉—关键点检测(NARF)

    关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别.寻物联系在一起.关键点检测可以说是通往高层次视觉的重要基础.但本章节仅在低层次视觉上讨论点云处理问题,故所有 ...

  5. PCL —— RCNN Family 中层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/6046411.html RCNN是从图像中检测物体位置的方法,严格来讲不属于三维计算机视觉.但是这种方法却又非常非常 ...

  6. PCL—低层次视觉—关键点检测(rangeImage)

    关键点又称为感兴趣的点,是低层次视觉通往高层次视觉的捷径,抑或是高层次感知对低层次处理手段的妥协. ——三维视觉关键点检测 1.关键点,线,面 关键点=特征点: 关键线=边缘: 关键面=foregro ...

  7. PCL—低层次视觉—点云分割(邻近信息)

    分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最简单的分割方式就是在边界上找些居民问:"小伙子,你到底能不能上油管啊?”.然后把能上油管的居民坐标 ...

  8. [Deep-Learning-with-Python]计算机视觉中的深度学习

    包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面 ...

  9. 计算机视觉中的词袋模型(Bow,Bag-of-words)

    计算机视觉中的词袋模型(Bow,Bag-of-words) Bag-of-words 读 'xw20084898的专栏'的blogBag-of-words model in computer visi ...

随机推荐

  1. Python中关于列表排序并保留id/enumerate()使用方法

    新手才开始写博客,不周之处请原谅,有错误请指正. >>> a = [1,4,2,5,3]>>> b = sorted(enumerate(a),key = lamb ...

  2. 前端工程化系列[06]-Yeoman脚手架核心机制

    在前端工程化系列[05] Yeoman脚手架使用入门这边文章中,对Yeoman的使用做了简单的入门介绍,这篇文章我们将接着探讨Yeoman这个脚手架工具内部的核心机制,主要包括以下内容 ❏ Yeoma ...

  3. Python3 与 NetCore 基础语法对比(List、Tuple、Dict、Set专栏)

    Jupyter最新版:https://www.cnblogs.com/dotnetcrazy/p/9155310.html 在线演示:http://nbviewer.jupyter.org/githu ...

  4. 国际化之iPhone设备支持的语种

    有没有想过,iPhone 语言到底支持多少语言呢?我倒是搜索了一下,整理出下面一份列表,供大家参考 参考链接: https://www.ibabbleon.com/iOS-Language-Codes ...

  5. Unity设置播放模式下始终先执行指定的场景

    通过我们使用Unity开发游戏,是在PC/Mac上.而一个游戏通常也会有很多的场景,比如A.B.C.D三个场景,正常流程下的执行顺序是 A –> B –> C –> D.在具体一点, ...

  6. SAP传输请求自动发布

        最近公司服务器做迁移,原R3 PRE需要迁到另外的地方,迁移后一段时间内,需要两套PRE环境同时运行,过一段时间后才将传输路线切换到新的PRE.在切换前,要求新PRE环境也要正常同步发布请求, ...

  7. 罗技Setpoint控制酷狗等第三方播放器

    手里有个淘过来的二手戴尔蓝牙键盘,虽然是戴尔的,但是确实罗技代工的,因此可以使用罗技的Setpoint,用这个软件后可以集中管理罗技的键盘鼠标进行一些个性化设置,如下图所示.不过郁闷的是如果不装Set ...

  8. Web Workers 简介

    web worker 介绍:https://developer.mozilla.org/zh-CN/docs/Web/API/Web_Workers_API/Using_web_workers web ...

  9. 【Android】解析Paint类中Xfermode的使用

    Paint类提供了setXfermode(Xfermode xfermode)方法,Xfermode指明了原图像和目标图像的结合方式.谈到Xfermode就不得不谈它的派生类PorterDuffXfe ...

  10. C#中,重新排列panel中的按钮

    https://www.cnblogs.com/hfzsjz/archive/2010/08/13/1799068.html void ArrangeButtons(Panel pn) { , y = ...