题目链接:http://poj.org/problem?id=1904

题意:有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王子可以和几个妹子结婚,按序号升序输出妹子的编号,这个表应满足所有的王子最终都有妹子和他结婚。

分析:很好的图论题,把强连通分量和完美匹配结合起来了,记得多校的时候看到类似的题目(hdu 4685),但是不会做,还以为是二分匹配=_=

首先建图,如果王子u喜欢妹子v,则建一条边u指向v(u,v),对于大臣给出的初始完美匹配,如果王子u和妹子v结婚,则建一条边v指向u(v,u),然后求强连通分量,

对于每个王子和妹子,如果他们都在同一个强连通分量内,则他们可以结婚。

为什么呢?因为每个王子只能和喜欢的妹子结婚,初始完美匹配中的丈夫和妻子之间有两条方向不同的边可以互达,则同一个强连通分量中的王子数和妹子数一定是相等的,若王子x可以和另外的一个妹子a结婚,妹子a的原配王子y肯定能找到另外一个妹子b结婚,因为如果找不到的话,则x和a必不在同一个强连通分量中。

所以一个王子可以和所有与他同一强连通分量的妹子结婚,而这不会导致同一强连通分量中的其他王子找不到妹子结婚。

好像很绕的样子@_@。。。。。大家在纸上画画图吧

建图的时候王子从1~n编号,妹子从n+1~2*n编号

这一题的数据量挺大的,光是输入输出就会消耗很多时间了,可以用输入输出外挂来加速读入和输出。

不加输入外挂9000+ms

加输入外挂8000+ms

加输入输出外挂500+ms

AC代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=+;
const int M=+;
struct EDGE{
int v,next;
}edge[M];
int first[N],low[N],dfn[N],sta[M],belong[N],ans[N];
bool instack[N];
int g,cnt,top,scc; void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
int min(int a,int b)
{
return a<b?a:b;
}
void Tarjan(int u) //求强连通分量
{
int i,v;
low[u]=dfn[u]=++cnt;
sta[++top]=u;
instack[u]=true;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc++;
while()
{
v=sta[top--];
instack[v]=false;
belong[v]=scc; //缩点
if(u==v)
break;
}
}
}
int Scan() //输入外挂
{
int res=,ch,flag=;
if((ch=getchar())=='-')
flag=;
else if(ch>=''&&ch<='')
res=ch-'';
while((ch=getchar())>=''&&ch<='')
res=res*+ch-'';
return flag?-res:res;
}
void Out(int a) //输出外挂
{
if(a>)
Out(a/);
putchar(a%+'');
}
int main()
{
int n,i,u,v,k;
while(scanf("%d",&n)!=EOF)
{
g=cnt=top=scc=;
memset(first,-,sizeof(first));
memset(dfn,,sizeof(dfn));
memset(instack,false,sizeof(instack));
for(i=;i<=n;i++)
{
// scanf("%d",&k);
k=Scan();
while(k--)
{
// scanf("%d",&v);
v=Scan();
AddEdge(i,v+n); //王子i喜欢妹子v
}
}
for(i=;i<=n;i++)
{
// scanf("%d",&v);
v=Scan();
AddEdge(v+n,i); //王子i可以和妹子v结婚
} for(i=;i<=*n;i++) //求强连通分量
if(!dfn[i])
Tarjan(i); for(u=;u<=n;u++)
{
int count=;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(belong[u]==belong[v]) //同一个强连通分量
ans[count++]=v-n;
}
sort(ans,ans+count);
// printf("%d",count);
Out(count);
for(i=;i<count;i++)
{
//printf(" %d",ans[i]);
putchar(' ');
Out(ans[i]);
}
// printf("\n");
putchar('\n');
}
}
return ;
}

poj 1904(强连通分量+输入输出外挂)的更多相关文章

  1. poj 1904(强连通分量+完美匹配)

    传送门:Problem 1904 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:http://www.cnblogs.co ...

  2. poj 1904 强连通分量

    思路:先有每个儿子向所有他喜欢的姑娘建边,对于最后给出的正确匹配,我们建由姑娘到相应王子的边.和某个王子在同一强连通分量,且王子喜欢的姑娘都是该王子能娶得.思想类似匈牙利算法求匹配的时候,总能找到增广 ...

  3. poj 2186 强连通分量

    poj 2186 强连通分量 传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 33414 Acc ...

  4. POJ 1904 King's Quest 强联通分量+输入输出外挂

    题意:国王有n个儿子,现在这n个儿子要在n个女孩里选择自己喜欢的,有的儿子可能喜欢多个,最后国王的向导给出他一个匹配.匹配有n个数,代表某个儿子和哪个女孩可以结婚.已知这些条件,要你找出每个儿子可以和 ...

  5. poj 2762(强连通分量+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...

  6. poj 1236(强连通分量分解模板题)

    传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...

  7. POJ(2186)强连通分量分解

    #include<cstdio> #include<vector> #include<cstring> using namespace std; ; vector& ...

  8. Popular Cows POJ - 2186(强连通分量)

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10, ...

  9. Poj 1904 King's Quest 强连通分量

    题目链接: http://poj.org/problem?id=1904 题意: 有n个王子和n个公主,王子只能娶自己心仪的公主(一个王子可能会有多个心仪的公主),现已给出一个完美匹配,问每个王子都可 ...

随机推荐

  1. 转载 [深入学习C#]C#实现多线程的方式:使用Parallel类

    简介 在C#中实现多线程的另一个方式是使用Parallel类. 在.NET4中 ,另一个新增的抽象线程是Parallel类 .这个类定义了并行的for和foreach的 静态方法.在为 for和 fo ...

  2. B-Tree外存数据结构 _(外存储器—磁盘)第一部分

    1.外存储器—磁盘 计算机存储设备一般分为两种:内存储器(main memory)和外存储器(external memory).内存存取速度快,但容量小,价格昂贵,而且不能长期保存数据(在不通电情况下 ...

  3. Android ScrollView和ListView联用,且ListView可以下拉刷新和上拉加载

    ScrollView嵌套listView且ListView可以实现上拉加载. 由于代码太长,在此只提供实现思路: 先不说上拉加载的事,咱们先回想一下,ScrollView和LsitView联用,时的解 ...

  4. Luogu2612 ZJOI2012 波浪 DP

    传送门 花掉了自己用来搞学科的时间做了这道题-- 一道类似的题:Here 考虑拆开绝对值计算贡献.那么我们对于\(1\)到\(N\)的排列,从小到大地将插入它们插入排列中. 假设我们现在计算到了数\( ...

  5. 轻量级WebApi请求插件:PostMan

    时间很宝贵,废话不多说,只说三句,如下: 十年河东,十年河西,莫欺骚年穷!~_~ 打错个字,应该是莫欺少年穷! 学历代表你的过去,能力代表你的现在,学习代表你的将来. 学无止境,精益求精. 本次介绍的 ...

  6. EF 利用PagedList进行分页并结合查询 方法2

    微软提供了PagedList分页,相信大家在网上也能搜索一大堆关于pagedList用法的博客,论坛.但是,在使用的过程中一不小心,就会掉入pagedList某种常规用法的陷阱. 我所说的某种常规用法 ...

  7. python第二周。2019.4.13

    1, 我绘制大蟒蛇就是..保存也对着呢,你要是打开文件的话,先闪个黑屏,再闪个白屏..自动退出,然后啥都没了. 我觉得是我代码编错了...再来一遍! 这次到可以,但是这个大蟒蛇好像没有回头... 刚才 ...

  8. ElasticSearch实践系列(一):安装

    Elasticsearch简介 Elasticsearch是一个高度可扩展的开源全文搜索和分析引擎.它允许您快速,近实时地存储,搜索和分析大量数据.它通常用作底层引擎/技术,为具有复杂搜索功能和要求的 ...

  9. OpenTracing:开放式分布式追踪规范

    前言 想实现一个简单的追踪系统似乎是容易的,需要必要的调用链id,时间戳等:想实现一款易用不侵入代码的追踪系统就很麻烦了,需要接触CLR和IL相关知识:即使你费劲心力做出了那些,如果性能不够好,也没有 ...

  10. 总目录(Catalog)

    总目录(Catalog) C#高级编程(C# advanced programming) 1.并发编程(Concurrent programming)(8) ...... 数据结构与算法(Data s ...