poj 1904(强连通分量+输入输出外挂)
题目链接:http://poj.org/problem?id=1904
题意:有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王子可以和几个妹子结婚,按序号升序输出妹子的编号,这个表应满足所有的王子最终都有妹子和他结婚。
分析:很好的图论题,把强连通分量和完美匹配结合起来了,记得多校的时候看到类似的题目(hdu 4685),但是不会做,还以为是二分匹配=_=
首先建图,如果王子u喜欢妹子v,则建一条边u指向v(u,v),对于大臣给出的初始完美匹配,如果王子u和妹子v结婚,则建一条边v指向u(v,u),然后求强连通分量,
对于每个王子和妹子,如果他们都在同一个强连通分量内,则他们可以结婚。
为什么呢?因为每个王子只能和喜欢的妹子结婚,初始完美匹配中的丈夫和妻子之间有两条方向不同的边可以互达,则同一个强连通分量中的王子数和妹子数一定是相等的,若王子x可以和另外的一个妹子a结婚,妹子a的原配王子y肯定能找到另外一个妹子b结婚,因为如果找不到的话,则x和a必不在同一个强连通分量中。
所以一个王子可以和所有与他同一强连通分量的妹子结婚,而这不会导致同一强连通分量中的其他王子找不到妹子结婚。
好像很绕的样子@_@。。。。。大家在纸上画画图吧
建图的时候王子从1~n编号,妹子从n+1~2*n编号
这一题的数据量挺大的,光是输入输出就会消耗很多时间了,可以用输入输出外挂来加速读入和输出。
不加输入外挂9000+ms
加输入外挂8000+ms
加输入输出外挂500+ms
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=+;
const int M=+;
struct EDGE{
int v,next;
}edge[M];
int first[N],low[N],dfn[N],sta[M],belong[N],ans[N];
bool instack[N];
int g,cnt,top,scc; void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
int min(int a,int b)
{
return a<b?a:b;
}
void Tarjan(int u) //求强连通分量
{
int i,v;
low[u]=dfn[u]=++cnt;
sta[++top]=u;
instack[u]=true;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc++;
while()
{
v=sta[top--];
instack[v]=false;
belong[v]=scc; //缩点
if(u==v)
break;
}
}
}
int Scan() //输入外挂
{
int res=,ch,flag=;
if((ch=getchar())=='-')
flag=;
else if(ch>=''&&ch<='')
res=ch-'';
while((ch=getchar())>=''&&ch<='')
res=res*+ch-'';
return flag?-res:res;
}
void Out(int a) //输出外挂
{
if(a>)
Out(a/);
putchar(a%+'');
}
int main()
{
int n,i,u,v,k;
while(scanf("%d",&n)!=EOF)
{
g=cnt=top=scc=;
memset(first,-,sizeof(first));
memset(dfn,,sizeof(dfn));
memset(instack,false,sizeof(instack));
for(i=;i<=n;i++)
{
// scanf("%d",&k);
k=Scan();
while(k--)
{
// scanf("%d",&v);
v=Scan();
AddEdge(i,v+n); //王子i喜欢妹子v
}
}
for(i=;i<=n;i++)
{
// scanf("%d",&v);
v=Scan();
AddEdge(v+n,i); //王子i可以和妹子v结婚
} for(i=;i<=*n;i++) //求强连通分量
if(!dfn[i])
Tarjan(i); for(u=;u<=n;u++)
{
int count=;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(belong[u]==belong[v]) //同一个强连通分量
ans[count++]=v-n;
}
sort(ans,ans+count);
// printf("%d",count);
Out(count);
for(i=;i<count;i++)
{
//printf(" %d",ans[i]);
putchar(' ');
Out(ans[i]);
}
// printf("\n");
putchar('\n');
}
}
return ;
}
poj 1904(强连通分量+输入输出外挂)的更多相关文章
- poj 1904(强连通分量+完美匹配)
传送门:Problem 1904 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:http://www.cnblogs.co ...
- poj 1904 强连通分量
思路:先有每个儿子向所有他喜欢的姑娘建边,对于最后给出的正确匹配,我们建由姑娘到相应王子的边.和某个王子在同一强连通分量,且王子喜欢的姑娘都是该王子能娶得.思想类似匈牙利算法求匹配的时候,总能找到增广 ...
- poj 2186 强连通分量
poj 2186 强连通分量 传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 33414 Acc ...
- POJ 1904 King's Quest 强联通分量+输入输出外挂
题意:国王有n个儿子,现在这n个儿子要在n个女孩里选择自己喜欢的,有的儿子可能喜欢多个,最后国王的向导给出他一个匹配.匹配有n个数,代表某个儿子和哪个女孩可以结婚.已知这些条件,要你找出每个儿子可以和 ...
- poj 2762(强连通分量+拓扑排序)
题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...
- poj 1236(强连通分量分解模板题)
传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...
- POJ(2186)强连通分量分解
#include<cstdio> #include<vector> #include<cstring> using namespace std; ; vector& ...
- Popular Cows POJ - 2186(强连通分量)
Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10, ...
- Poj 1904 King's Quest 强连通分量
题目链接: http://poj.org/problem?id=1904 题意: 有n个王子和n个公主,王子只能娶自己心仪的公主(一个王子可能会有多个心仪的公主),现已给出一个完美匹配,问每个王子都可 ...
随机推荐
- 《深入理解Java虚拟机》笔记(转)
文章来自http://www.cnblogs.com/tianchi/archive/2012/11/11/2761631.html 在C里面我们想执行一段自己编写的机器指令的方法大概如下: type ...
- Spring Security 重定向原理分析
本文基于 spring-security-core-5.1.1 和 tomcat-embed-core-9.0.12. 一个用户访问使用表单认证的 Web 应用时,后端的处理流程大致如下: 1.用户访 ...
- python基础学习第五天
li=[1,2,33,-1,'dbssd',[4,5,6],{4:'rfw',5:'re'}]del(li[1])print(li)print(type(li))#访问元素print(li[0])pr ...
- jconsole使用
先看一张图 根据JConsole和任务管理器对比,堆内存大小在250M左右,差不多空跑一个程序用idea启动springboot就是这个大小 项目启动初始类在一万个左右,活动线程50个上下,cpu利用 ...
- 5个python爬虫教材,让小白也有爬虫可写,含视频教程!
认识爬虫 网络爬虫,如果互联网是一张蜘蛛网,网络爬虫既是一个在此网上爬行的蜘蛛,爬了多少路程即获取到多少数据. python写爬虫的优势 其实以上功能很多语言和工具都能做,但是用python爬 ...
- 实现Repeater控件的记录单选
有朋友问及,在Repeater控件中第一列放置一个RadioButton,实现对记录的单选. 下面Insus.NET想举个例子来实现与说明. 为Repeater控件准备数据: 在ASPX网页上,写好R ...
- ASP.NET Web API上实现 Web Socket - 转
1. 什么是Web Socket Web Socket是Html5中引入的通信机制,它为浏览器与后台服务器之间提供了基于TCP的全双工的通信通道.用以替代以往的LongPooling等comet st ...
- C#大型电商项目优化(二)——嫌弃EF与抛弃EF
上一篇博文中讲述了使用EF开发电商项目的代码基础篇,提到EF后,一语激起千层浪.不少园友纷纷表示:EF不适合增长速度飞快的互联网项目,EF只适合企业级应用等等. 也有部分高手提到了分布式,确实,性能优 ...
- Linux 磁盘与磁盘分区
Linux 系统中所有的硬件设备都是通过文件的方式来表现和使用的,我们将这些文件称为设备文件,硬盘对应的设备文件一般被称为块设备文件.本文介绍磁盘设备在 Linux 系统中的表示方法以及如何创建磁盘分 ...
- WordPress更新时提示无法连接到FTP服务器的解决方案
这几天在搭建主站的时候,更新wordpress时无法连接到FTP原因服务器 解决方法如下: 在WordPress目录下找到wp-config.php文件并编辑,在最后一行加上: define('FS_ ...