题目链接:http://poj.org/problem?id=1904

题意:有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王子可以和几个妹子结婚,按序号升序输出妹子的编号,这个表应满足所有的王子最终都有妹子和他结婚。

分析:很好的图论题,把强连通分量和完美匹配结合起来了,记得多校的时候看到类似的题目(hdu 4685),但是不会做,还以为是二分匹配=_=

首先建图,如果王子u喜欢妹子v,则建一条边u指向v(u,v),对于大臣给出的初始完美匹配,如果王子u和妹子v结婚,则建一条边v指向u(v,u),然后求强连通分量,

对于每个王子和妹子,如果他们都在同一个强连通分量内,则他们可以结婚。

为什么呢?因为每个王子只能和喜欢的妹子结婚,初始完美匹配中的丈夫和妻子之间有两条方向不同的边可以互达,则同一个强连通分量中的王子数和妹子数一定是相等的,若王子x可以和另外的一个妹子a结婚,妹子a的原配王子y肯定能找到另外一个妹子b结婚,因为如果找不到的话,则x和a必不在同一个强连通分量中。

所以一个王子可以和所有与他同一强连通分量的妹子结婚,而这不会导致同一强连通分量中的其他王子找不到妹子结婚。

好像很绕的样子@_@。。。。。大家在纸上画画图吧

建图的时候王子从1~n编号,妹子从n+1~2*n编号

这一题的数据量挺大的,光是输入输出就会消耗很多时间了,可以用输入输出外挂来加速读入和输出。

不加输入外挂9000+ms

加输入外挂8000+ms

加输入输出外挂500+ms

AC代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=+;
const int M=+;
struct EDGE{
int v,next;
}edge[M];
int first[N],low[N],dfn[N],sta[M],belong[N],ans[N];
bool instack[N];
int g,cnt,top,scc; void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
int min(int a,int b)
{
return a<b?a:b;
}
void Tarjan(int u) //求强连通分量
{
int i,v;
low[u]=dfn[u]=++cnt;
sta[++top]=u;
instack[u]=true;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc++;
while()
{
v=sta[top--];
instack[v]=false;
belong[v]=scc; //缩点
if(u==v)
break;
}
}
}
int Scan() //输入外挂
{
int res=,ch,flag=;
if((ch=getchar())=='-')
flag=;
else if(ch>=''&&ch<='')
res=ch-'';
while((ch=getchar())>=''&&ch<='')
res=res*+ch-'';
return flag?-res:res;
}
void Out(int a) //输出外挂
{
if(a>)
Out(a/);
putchar(a%+'');
}
int main()
{
int n,i,u,v,k;
while(scanf("%d",&n)!=EOF)
{
g=cnt=top=scc=;
memset(first,-,sizeof(first));
memset(dfn,,sizeof(dfn));
memset(instack,false,sizeof(instack));
for(i=;i<=n;i++)
{
// scanf("%d",&k);
k=Scan();
while(k--)
{
// scanf("%d",&v);
v=Scan();
AddEdge(i,v+n); //王子i喜欢妹子v
}
}
for(i=;i<=n;i++)
{
// scanf("%d",&v);
v=Scan();
AddEdge(v+n,i); //王子i可以和妹子v结婚
} for(i=;i<=*n;i++) //求强连通分量
if(!dfn[i])
Tarjan(i); for(u=;u<=n;u++)
{
int count=;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(belong[u]==belong[v]) //同一个强连通分量
ans[count++]=v-n;
}
sort(ans,ans+count);
// printf("%d",count);
Out(count);
for(i=;i<count;i++)
{
//printf(" %d",ans[i]);
putchar(' ');
Out(ans[i]);
}
// printf("\n");
putchar('\n');
}
}
return ;
}

poj 1904(强连通分量+输入输出外挂)的更多相关文章

  1. poj 1904(强连通分量+完美匹配)

    传送门:Problem 1904 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:http://www.cnblogs.co ...

  2. poj 1904 强连通分量

    思路:先有每个儿子向所有他喜欢的姑娘建边,对于最后给出的正确匹配,我们建由姑娘到相应王子的边.和某个王子在同一强连通分量,且王子喜欢的姑娘都是该王子能娶得.思想类似匈牙利算法求匹配的时候,总能找到增广 ...

  3. poj 2186 强连通分量

    poj 2186 强连通分量 传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 33414 Acc ...

  4. POJ 1904 King's Quest 强联通分量+输入输出外挂

    题意:国王有n个儿子,现在这n个儿子要在n个女孩里选择自己喜欢的,有的儿子可能喜欢多个,最后国王的向导给出他一个匹配.匹配有n个数,代表某个儿子和哪个女孩可以结婚.已知这些条件,要你找出每个儿子可以和 ...

  5. poj 2762(强连通分量+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...

  6. poj 1236(强连通分量分解模板题)

    传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...

  7. POJ(2186)强连通分量分解

    #include<cstdio> #include<vector> #include<cstring> using namespace std; ; vector& ...

  8. Popular Cows POJ - 2186(强连通分量)

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10, ...

  9. Poj 1904 King's Quest 强连通分量

    题目链接: http://poj.org/problem?id=1904 题意: 有n个王子和n个公主,王子只能娶自己心仪的公主(一个王子可能会有多个心仪的公主),现已给出一个完美匹配,问每个王子都可 ...

随机推荐

  1. 转载 [深入学习C#]C#实现多线程的方式:使用Parallel类

    简介 在C#中实现多线程的另一个方式是使用Parallel类. 在.NET4中 ,另一个新增的抽象线程是Parallel类 .这个类定义了并行的for和foreach的 静态方法.在为 for和 fo ...

  2. 原生js 数组的迭代的方法

    一.原生js Array给我们提供很多了方法.方便我们操作数组.这些方法的参数,都需要传入一个匿名函数,匿名函数中有三个参数,分别含义是:数组中的项.该项的索引.以及数组本身. 1.filter方法: ...

  3. POJ2236

    https://vjudge.net/problem/POJ-2236 An earthquake takes place in Southeast Asia. The ACM (Asia Coope ...

  4. node.js 基础一 安装

    1.下载 2.安装 3.查看版本 一 下载 下载地址:https://nodejs.org/zh-cn/download/ 二 安装 运行安装包:node-v8.9.2-x64.msi

  5. 【Codeforces 1110D】Jongmah FST分析

    Codeforces 1110 D FST分析 dotorya.FizzyDavid.MofK.gamegame.matthew99.chokudai.eddy1021.DBradac.Happy_N ...

  6. java Arrays数组

    1.java.util.Arrays 工具类的使用Arrays 类中的常用方法1) toString()打印数组2) equals()比较两个数组是否相同3) copyOf(…)复制指定的数组 (效率 ...

  7. (转)tomcat 修改默认访问项目名称和项目发布路径

    1.项目发布路径 <Host name="localhost" appBase="webapps" unpackWARs="true" ...

  8. Luogu4137 Rmq problem/mex 主席树

    传送门 用主席树水莫队题…… 我们对于前缀和建立主席树,对于主席树中的每一个叶子节点表示它对应的数字最后出现的位置的编号,非叶子节点求左右节点的最小值,那么对于每一次询问$l,r$就是在第$r$棵主席 ...

  9. ASP.NET MVC中jQuery与angularjs混合应用传参并绑定数据

    要求是这样子的,在一个列表页中,用户点击详细铵钮,带记录的主键值至另一页.在另一外页中,获取记录数据,然后显示此记录数据在网页上. 先用动图演示: 昨天有分享为ng-click传递参数 <ang ...

  10. electron 开发实时加载

    第一个方式 cnpm install electron-reload --save-dev cnpm install electron-prebuilt --save-dev require('ele ...