tf.train 提供了一组帮助训练模型的类和函数。

优化器

优化器基类提供了计算渐变的方法,并将渐变应用于变量。子类的集合实现了经典的优化算法,如 GradientDescent和Adagrad。

您永远不会实例化优化器类本身,而是实例化其中一个子类。

  • tf.train.Optimizer
  • tf.train.GradientDescentOptimizer
  • tf.train.AdadeltaOptimizer
  • tf.train.AdagradOptimizer
  • tf.train.AdagradDAOptimizer
  • tf.train.MomentumOptimizer
  • tf.train.AdamOptimizer
  • tf.train.FtrlOptimizer
  • tf.train.ProximalGradientDescentOptimizer
  • tf.train.ProximalAdagradOptimizer
  • tf.train.RMSPropOptimizer

梯度计算

TensorFlow 提供了计算给定 TensorFlow 计算图的导数的函数,并将运算添加到图中。优化器类自动在您的关系图上计算派生,但是新的优化或专家用户的创建者可以调用下面的低级函数。

  • tf.gradients
  • tf.AggregationMethod
  • tf.stop_gradient
  • tf.hessians

梯度剪辑

TensorFlow 提供了几种操作,您可以使用它们为您的图形添加剪切功能。您可以使用这些功能执行一般的数据剪辑,但它们对于处理已推翻或消失的渐变特别有用。

  • tf.clip_by_value
  • tf.clip_by_norm
  • tf.clip_by_average_norm
  • tf.clip_by_global_norm
  • tf.global_norm

降低学习率

  • tf.train.exponential_decay
  • tf.train.inverse_time_decay
  • tf.train.natural_exp_decay
  • tf.train.piecewise_constant
  • tf.train.polynomial_decay

移动平均线

一些训练算法,例如 GradientDescent 和动量,通常会在优化过程中保持变量的移动平均值而受益。使用移动平均值进行评估通常会显著改善结果。

  • tf.train.ExponentialMovingAverage

协调员和 QueueRunner

有关如何使用线程和队列的操作,请参见线程和队列。有关队列 API 的文档,请参见队列。

  • tf.train.Coordinator
  • tf.train.QueueRunner
  • tf.train.LooperThread
  • tf.train.add_queue_runner
  • tf.train.start_queue_runners

分布式执行

分布式执行
有关如何配置分布式 TensorFlow 程序的详细信息,请参阅分布式 TensorFlow。

  • tf.train.Server
  • tf.train.Supervisor
  • tf.train.SessionManager
  • tf.train.ClusterSpec
  • tf.train.replica_device_setter
  • tf.train.MonitoredTrainingSession
  • tf.train.MonitoredSession
  • tf.train.SingularMonitoredSession
  • tf.train.Scaffold
  • tf.train.SessionCreator
  • tf.train.ChiefSessionCreator
  • tf.train.WorkerSessionCreator

从事件文件中读取摘要

有关摘要、事件文件和 TensorBoard 中的可视化的概述,请参见摘要和 TensorBoard。

  • tf.train.summary_iterator

Training Hooks

Hooks 是在模型的训练/评估过程中运行的工具:

  • tf.train.SessionRunHook
  • tf.train.SessionRunArgs
  • tf.train.SessionRunContext
  • tf.train.SessionRunValues
  • tf.train.LoggingTensorHook
  • tf.train.StopAtStepHook
  • tf.train.CheckpointSaverHook
  • tf.train.NewCheckpointReader
  • tf.train.StepCounterHook
  • tf.train.NanLossDuringTrainingError
  • tf.train.NanTensorHook
  • tf.train.SummarySaverHook
  • tf.train.GlobalStepWaiterHook
  • tf.train.FinalOpsHook
  • tf.train.FeedFnHook

Training 工具

    • tf.train.global_step
    • tf.train.basic_train_loop
    • tf.train.get_global_step
    • tf.train.assert_global_step
    • tf.train.write_graph

TensorFlow Training 优化函数的更多相关文章

  1. tensorflow training result

  2. Image Style Transfer:多风格 TensorFlow 实现

    ·其实这是一个选修课的present,整理一下作为一篇博客,希望对你有用.讲解风格迁移的博客蛮多的,我就不过多的赘述了.讲一点几个关键的地方吧,当然最后的代码和ppt也希望对你有用. 1.引入: 风格 ...

  3. TensorFlow 便捷的实现机器学习 三

    TensorFlow 便捷的实现机器学习 三 MNIST 卷积神经网络 Fly Overview Enabling Logging with TensorFlow Configuring a Vali ...

  4. Run Your Tensorflow Deep Learning Models on Google AI

    People commonly tend to put much effort on hyperparameter tuning and training while using Tensoflow& ...

  5. 聊天机器人(chatbot)终极指南:自然语言处理(NLP)和深度机器学习(Deep Machine Learning)

    在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料. 时不时地我会发现一个出色的资源,因此 ...

  6. [源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer

    [源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 目录 [源码解析] 深度学习分布式训练框架 horovod (7) --- Distri ...

  7. [Tensorflow] Object Detection API - prepare your training data

    From: TensorFlow Object Detection API This chapter help you to train your own model to identify obje ...

  8. [Tensorflow] Object Detection API - build your training environment

    一.前期准备 Prepare protoc Download Protocol Buffers Create folder: protoc and unzip it. unsw@unsw-UX303U ...

  9. 【Tensorflow】 Object_detection之配置Training Pipeline

    参考:Configuring an object detection pipeline 1.config文件 配置好的config文件存放路径:object_detection/samples/con ...

随机推荐

  1. Linux基础命令---cancel取消打印任务

    cancel cancel指令用来取消已经存在的打印任务. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.openSUSE.SUSE.   1.语法       ...

  2. Linux基础命令---accept/reject 允许拒绝发送打印请求

    accept accept指令用来设置允许向目标打印机发送打印任务. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法      cupsaccept ...

  3. AUTEL MaxiSYS Pro MS908P Diagnostic System with WiFi Update Online

    The MaxiSYS? Pro has been designed to be the go-to tool for the professional technician who performs ...

  4. Vue 组件&组件之间的通信 之全局组件与局部组件

    在上篇博客中介绍了组件,在注册组件的简写中就用到了全局组件 //注册组件的简写方式 Vue.component('my-componenta',{ template:'<h2>hello ...

  5. STS的安装与简单使用

    一,STS下载与安装 1.下载地址:http://spring.io/tools3/sts/all 2.选择对应版本安装或者解压 二,STS简单使用 1.快捷方法 (1)main+alt+/+回车 = ...

  6. RabbitMQ&RocketMQ动态添加Queue参考

    Kafka重复消费与消息丢失参考: https://www.cnblogs.com/kaleidoscope/p/9763053.html https://blog.csdn.net/qingqing ...

  7. docker入门篇 部署springboot项目

    安装docker Ubuntu16.04安装Docker 使用docker 注册docker服务 systemctl enable docker systemctl status docker 然后在 ...

  8. 【笔记】Cocos2dx学习笔记

    自建场景类 自建场景类BaseScene继承与Scene类,在init函数中添加了默认的,键盘与鼠标事件的响应,添加了一个用于读取XML文件的字典,添加了一个结束场景的方法. 类的声明代码如下: #i ...

  9. 【Bilinear interpolation】双线性插值详解(转)

           最近在做视频拼接的项目,里面用到了图像的单应性矩阵变换,在最后的图像重映射,由于目标图像的坐标是非整数的,所以需要用到插值的方法,用的就是双线性插值,下面的博文主要是查看了前辈的博客对双 ...

  10. jstack生成的Thread Dump日志线程 分析

    文章转载自: https://www.javatang.com/archives/2017/10/25/36441958.html 前面文章中只分析了Thread Dump日志文件的结构,今天针对日志 ...