qbxt的题:找一个三元环
有向图中找一个三元环
题意:
考虑 N 个人玩一个游戏, 任意两个人之间进行一场游戏 (共 N*(N-1)/2 场),且每场一定能分出胜负。现在,你需要在其中找到三个人构成的这样的局面:A战胜B,B战胜C,C战胜A。
分析:
注意到一个重要的条件,就是图中有n*(n-1)/2条有向边。
正解的做法:在图中找一个环,如果存在一个环,那么一定存在一个三元环。
为什么?
对于一个环,是这样的,枚举除起点外的前两个点,即123,如果3可以到1,那么说明存在一个三元环。
否则,说明1一定连向了3,然后判断第4是否连向1即可。依次类推。
一直判断下去,到8号点,可行的就行了。
否则,剩下的三个点一定可以了。
代码:
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cctype>
#include<cmath>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x = , f = ; char ch = getchar(); for (; !isdigit(ch); ch=getchar()) if (ch=='-') f=-;
for (; isdigit(ch); ch=getchar()) x = x * + ch - ''; return x * f;
} const int N = ; char s[N][N];
int top, n, vis[N], sk[N], pos[N];
vector<int> ans; void pr() {
for (int i = ; i < ans.size() - ; ++i) {
if (s[ans[i + ]][ans[]] == '') {
cout << ans[] << " " << ans[i] << " " << ans[i + ];
exit();
}
}
} void dfs(int u) {
vis[u] = , sk[++top] = u; pos[u] = top;
for (int i = ; i <= n; ++i) {
if (s[u][i] != '') continue;
if (vis[i] == ) {
int len = top - pos[i] + ;
for (int j = pos[i]; j <= top; ++j) ans.push_back(sk[j]);
pr();
} else if (vis[i] == ) {
dfs(i);
}
}
--top; vis[u] = ;
} int main() { freopen("game.in","r",stdin);
freopen("game.out","w",stdout); n = read();
for (int i = ; i <= n; ++i) scanf("%s",s[i] + );
for (int i = ; i <= n; ++i) {
if (!vis[i]) dfs(i);
}
puts("-1");
return ;
}
/*
5
00100
10000
01001
11101
11000 */
qbxt的题:找一个三元环的更多相关文章
- HDU6184【Counting Stars】(三元环计数)
题面 传送门 给出一张无向图,求 \(4\) 个点构成两个有公共边的三元环的方案数. 题解 orz余奶奶,orz zzk 首先,如果我们知道经过每条边的三元环个数\(cnt_i\),那么答案就是\(\ ...
- Codeforces 985G - Team Players(三元环)
Codeforces 题目传送门 & 洛谷题目传送门 真·ycx 做啥题我就做啥题 考虑枚举 \(j\),我们预处理出 \(c1_i\) 表示与 \(i\) 相连的编号 \(<i\) 的 ...
- BZOJ3498PA2009 Cakes——三元环
题目描述 N个点m条边,每个点有一个点权a.对于任意一个三元环(j,j,k)(i<j<k),它的贡献为max(ai,aj,ak) 求所有三元环的贡献和.N<100000,,m< ...
- 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
[BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...
- FJWC2019 子图 (三元环计数、四元环计数)
给定 n 个点和 m 条边的一张图和一个值 k ,求图中边数为 k 的联通子图个数 mod 1e9+7. \(n \le 10^5, m \le 2 \times 10^5, 1 \le k \le ...
- 三元环HDU 6184
HDU - 6184 C - Counting Stars 题目大意:有n个点,m条边,问有一共有多少个‘structure’也就是满足V=(A,B,C,D) and E=(AB,BC,CD,DA,A ...
- Codeforces Gym 100342J Problem J. Triatrip 求三元环的数量 bitset
Problem J. Triatrip Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...
- BZOJ 3498 PA2009 Cakes(三元环处理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3498 [题目大意] N个点m条边,每个点有一个点权a. 对于任意一个三元环(j,j,k ...
- BZOJ.3498.[PA2009]Cakes(三元环 枚举)
题目链接 感觉我可能学的假的(复杂度没问题,但是常数巨大). 一个比较真的说明见这儿:https://czyhe.me/blog/algorithm/3-mem-ring/3-mem-ring/. \ ...
随机推荐
- 一个高性能的对象属性复制类,支持不同类型对象间复制,支持Nullable<T>类型属性
由于在实际应用中,需要对大量的对象属性进行复制,原来的方法是通过反射实现,在量大了以后,反射的性能问题就凸显出来了,必须用Emit来实现. 搜了一圈代码,没发现适合的,要么只能在相同类型对象间复制,要 ...
- shell脚本之特殊符号总结性梳理
# 井号 (comments) 这几乎是个满场都有的符号#!/bin/bash 井号也常出现在一行的开头,或者位于完整指令之后,这类情况表示符号后面的是注解文字,不会被执行. # This line ...
- mysqldump数据导出问题和客户端授权后连接失败问题
1,使用mysqldump时报错(1064),这个是因为mysqldump版本太低与当前数据库版本不一致导致的.mysqldump: Couldn't execute 'SET OPTION SQL_ ...
- java 定时器中任务的启动、停止、再启动
package com.cvicse.ump.timer.service; import java.util.Date; import java.util.Timer; import com.cvic ...
- mac系统下修复第三方Python包bug
发现问题 今天在github上fork了CI 3.x的中文手册,按照README文档一步步进行Sphinx和相关工具的安装,最终build生成html版手册.操作到第6步执行`make html`的时 ...
- mooc linux学习总结
通过八周的学习获得了很多知识. 首先,通过网课老师形象生动的讲述和描述一些专业词汇,使我更加深刻的记住并掌握了这些内容:动态的展示堆栈的变化,更容易理解一段汇编代码:分析操作系统的工作,记 ...
- Github的建立及心得体会
第一次接触Github,这次注册最大的难处就是全英文,着实看不懂.仅凭着认识的几个常用词去了解个具体内容实在是太困难了.所以第一个体会就是要好好学英语背单词,不想看到满屏的英文就感觉头疼,烦躁.第二个 ...
- 第三个Sprint冲刺第八天(燃尽图)
- ajax跨域请求数据
最近开始接触ajax的跨域请求问题,相比网上说的一大堆,我这里就说得比较浅显了. 关于为什么要跨域这个问题,实际的需求是当网站项目部署在一个域名上的时候,分域可以很好地解决网站卡顿问题(拥有多台服务器 ...
- David Silver强化学习Lecture3:动态规划
课件:Lecture 3: Planning by Dynamic Programming 视频:David Silver强化学习第3课 - 动态规划(中文字幕) 动态规划 动态(Dynamic): ...