BZOJ1497[NOI2006]最大获利——最大权闭合子图
题目描述
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)
输入
输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。
输出
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
这道题是最大权闭合子图入门题,源点连向用户群,容量为收益;中转站连向汇点,容量为成本。每个用户群连向对应中转站,容量为INF。求网络最小割(最大流),用总收益减掉最小割即可。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
int head[60001];
int to[400001];
int val[400001];
int next[400001];
int tot=1;
int n,m;
int x;
int a,b,c;
int S,T;
int d[60001];
int q[60001];
int INF=2147483647;
int ans=0;
int sum=0;
void add(int x,int y,int z)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
int dfs(int x,int maxflow)
{
if(x==T)
{
return maxflow;
}
int used=0;
int nowflow;
for(int i=head[x];i;i=next[i])
{
if(val[i]!=0&&d[to[i]]==d[x]+1)
{
nowflow=dfs(to[i],min(maxflow-used,val[i]));
val[i]-=nowflow;
val[i^1]+=nowflow;
used+=nowflow;
if(nowflow==maxflow)
{
return maxflow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
bool bfs(int S,int T)
{
memset(d,-1,sizeof(d));
memset(q,0,sizeof(q));
d[S]=0;
int l=0;
int r=0;
q[r++]=S;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]!=-1)
{
return true;
}
return false;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,INF);
}
}
int main()
{
scanf("%d%d",&n,&m);
S=n+m+1;
T=n+m+2;
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
add(i+m,T,x);
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
sum+=c;
add(S,i,c);
add(i,a+m,INF);
add(i,b+m,INF);
}
dinic();
printf("%d",sum-ans);
}
BZOJ1497[NOI2006]最大获利——最大权闭合子图的更多相关文章
- bzoj1497 [NOI2006]最大获利 最大权闭合子图
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...
- P4174 [NOI2006]最大获利 (最大权闭合子图)
P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...
- 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割
[题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...
- COGS28 [NOI2006] 最大获利[最大权闭合子图]
[NOI2006] 最大获利 ★★★☆ 输入文件:profit.in 输出文件:profit.out 简单对比时间限制:2 s 内存限制:512 MB [问题描述] 新的技术正冲击着手 ...
- bzoj1497 最大获利(最大权闭合子图)
题目链接 思路 对于每个中转站向\(T\)连一条权值为建这个中转站代价的边.割掉这条边表示会建这个中转站. 对于每个人向他的两个中转站连一条权值为\(INF\)的边.然后从\(S\)向这个人连一条权值 ...
- BZOJ 1497 最大获利(最大权闭合子图)
http://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路:由题意可以得知,每个顾客都依赖2个中转站,那么让中转站连有向边到汇点,流量为它的建设费用 ...
- bzoj1497: [NOI2006]最大获利(最大权闭合子图)
1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...
- 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利
[题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...
- 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利
最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...
随机推荐
- <转>jmeter(十四)HTTP请求之content-type
本博客转载自:http://www.cnblogs.com/dinghanhua/p/5646435.html 个人感觉不错,对jmeter最常用的取样器http请求需要用到的信息头管理器做了很好的解 ...
- java中使用阻塞队列实现生产这与消费这之间的关系
需求如下: 有一个生产者和一个消费者,生产者不断的生产产品,消费这不断的消费产品.产品总数为N. 1.生产顺序按队列的方式,先进先出. 2.生产者和消费这可以同时进行. 3.当生产者生产了N个产品后不 ...
- SkylineGlobe TEPro 6.6.1 二次开发导出KML或者KMZ文件示例代码
其实Skyline的fly文件跟kml文件很像很像,只不过一个是编码加密的,另一个早已经成为OGC的通用标准: 喜欢Skyline的小伙伴们试试下面的代码吧,细心的人能发现彩蛋哦. <!DOCT ...
- 如何屏蔽SkylineGlobe提供的三维地图控件上的快捷键
SkyllineGlobe提供的 <OBJECT ID=" TerraExplorer3DWindow" CLASSID="CLSID:3a4f9192-65a8- ...
- security相关链接整理
token令牌 ssl协议 https协议 对称加密与非对称加密 认识ASP.NET Windows身份认证
- POJ3714 Raid 分治/K-D Tree
VJ传送门 简要题意:给出两个大小均为\(N\)的点集\(A,B\),试在\(A\)中选择一个点,在\(B\)中选择一个点,使得它们在所有可能的选择方案中欧几里得距离最小,求出这个距离 下面给出的两种 ...
- Luogu4137 Rmq problem/mex 主席树
传送门 用主席树水莫队题…… 我们对于前缀和建立主席树,对于主席树中的每一个叶子节点表示它对应的数字最后出现的位置的编号,非叶子节点求左右节点的最小值,那么对于每一次询问$l,r$就是在第$r$棵主席 ...
- WPF 滚动文字控件MarqueeControl
原文:WPF 滚动文字控件MarqueeControl WPF使用的滚动文字控件,支持上下左右滚动方式,支持设置滚动速度 XAML部分: <UserControl x:Class="U ...
- 利用Costura.Fody制作绿色单文件程序(C#程序(含多个Dll)合并成一个Exe)
原文:利用Costura.Fody制作绿色单文件程序(C#程序(含多个Dll)合并成一个Exe) 开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了.这 ...
- Luogu P2482 [SDOI2010]猪国杀
这道题在模拟界地位不亚于Luogu P4604 [WC2017]挑战在卡常界的地位了吧. 早上到机房开始写,中间因为有模拟赛一直到1点过才正式开始码. 一边膜拜CXR dalao一边写到3点左右,然后 ...