Codeforces.662C.Binary Table(状压 FWT)
\(Description\)
给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转。求操作后最少剩下多少个\(1\)。
\(n\leq20,m\leq10^5\)。
\(Solution\)
\(n\)这么小,要想到一是可以状压状态,二是可以枚举选了哪些行。
发现在确定了选哪些行之后,每一列的选择是确定的(取变与不变后得到的状态中\(1\)较少的那个)。
那么假设\(y\)为这一列的最终状态(可以状压表示出来),则这一列的答案为\(B[y]=\min(y中0的个数,y中1的个数)\)(\(B[y]\)可以预处理得到)。而使列的状态由\(x\)变为\(y\),所需要反转的行为\(x\ \mathbb{xor}\ y\)。
状态相同的列显然可以合并。不妨令\(A[x]\)表示状态为\(x\)的列的个数。
那么假设最终选择反转的行为\(s\),则\(ans_s=\sum_{x\ \mathbb{xor}\ y=s}A[x]\times B[y]\)。
异或卷积,\(FWT\)就行了。
复杂度\(O(2^n\log 2^n)=O(2^nn)\)。
另外运算时显然不会爆int。\(FWT\)时会爆int,但是开longlong就行了不需要取模。
//124ms 16900KB
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define MAXIN 50000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<20)+5;
int col[100005];
LL A[N],B[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void FWT(LL *a,int lim,int opt)
{
for(int i=2; i<=lim; i<<=1)
for(int j=0,mid=i>>1; j<lim; j+=i)
for(int k=j; k<j+mid; ++k)
{
LL x=a[k], y=a[k+mid];//LL!
a[k]=x+y, a[k+mid]=x-y;
if(opt==-1) a[k]>>=1, a[k+mid]>>=1;//这个还可以最后ans>>n。。
}
}
int main()
{
int n=read(),m=read(),lim=1<<n;
for(int i=0; i<n; ++i)
{
register char c=gc(); while(!isdigit(c)) c=gc();
col[0]|=c-'0'<<i;
for(int j=1; j<m; ++j) col[j]|=gc()-'0'<<i;
}
for(int i=0; i<m; ++i) ++A[col[i]];//cnt
for(int i=1; i<lim; ++i) B[i]=B[i>>1]+(i&1);//bitcount
for(int i=1; i<lim; ++i) B[i]=std::min(B[i],n-B[i]);
FWT(A,lim,1), FWT(B,lim,1);
for(int i=0; i<lim; ++i) A[i]*=B[i];
FWT(A,lim,-1);
int ans=n*m;
for(int i=0; i<lim; ++i) ans=std::min(ans,(int)A[i]);
printf("%d\n",ans);
return 0;
}
Codeforces.662C.Binary Table(状压 FWT)的更多相关文章
- [CF662C Binary Table][状压+FWT]
CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...
- Codeforces #662C Binary Table
听说这是一道$ Tourist$现场没出的题 Codeforces #662C 题意: 给定$n*m的 01$矩阵,可以任意反转一行/列($0$变$1$,$1$变$0$),求最少$ 1$的数量 $ n ...
- CodeForces - 662C Binary Table (FWT)
题意:给一个N*M的0-1矩阵,可以进行若干次操作,每次操作将一行或一列的0和1反转,求最后能得到的最少的1的个数. 分析:本题可用FWT求解. 因为其0-1反转的特殊性且\(N\leq20\),将每 ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- Codeforces 917C - Pollywog(状压 dp+矩阵优化)
UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...
- Codeforces 79D - Password(状压 dp+差分转化)
Codeforces 题目传送门 & 洛谷题目传送门 一个远古场的 *2800,在现在看来大概 *2600 左右罢( 不过我写这篇题解的原因大概是因为这题教会了我一个套路罢( 首先注意到每次翻 ...
- Codeforces 544E Remembering Strings 状压dp
题目链接 题意: 给定n个长度均为m的字符串 以下n行给出字符串 以下n*m的矩阵表示把相应的字母改动成其它字母的花费. 问: 对于一个字符串,若它是easy to remembering 当 它存在 ...
- codeforces 21D. Traveling Graph 状压dp
题目链接 题目大意: 给一个无向图, n个点m条边, 每条边有权值, 问你从1出发, 每条边至少走一次, 最终回到点1. 所走的距离最短是多少. 如果这个图是一个欧拉回路, 即所有点的度数为偶数. 那 ...
- Codeforces 895C - Square Subsets 状压DP
题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...
随机推荐
- Fidder 请求信息颜色的含义
颜色 含义 红色 HTTP状态错误 黄色 HTTP状态需用户认证 灰色 数据流类型CONNECT 或 响应内容是图片 紫色 响应内容是CSS文件 蓝色 响应内容是HTML 绿色 响应内容是Script ...
- Allegro PCB Design GXL (legacy) 从dxf文件中导入板框
Allegro PCB Design GXL (legacy) version 16.6-2015 新建brd文件,并设置好相应的参数之后,点击菜单:File > Import > DXF ...
- 数据库解析IP,时间戳
#解析IP SELECT INET_NTOA('168494269'); #解析时间戳 SELECT FROM_UNIXTIME('1505458308');
- python获取信息
import uuid import socket def get_mac(): mac=uuid.UUID(int = uuid.getnode()).hex[-12:] return " ...
- ServerSocket实现超简单HTTP服务器
1.相关知识简介 HTTP协议 HTTP是常用的应用层协议之一,是面向文本的协议.HTTP报文传输基于TCP协议,TCP协议包含头部与数据部分,而HTTP则是包含在TCP协议的数据部分,如下图 HTT ...
- EF批量插入数据(Z.EntityFramework.Extensions)
EF用原生的插入数据方法DbSet.ADD()和 DbSet.AddRange()都很慢.所以要做大型的批量插入只能另选它法. 1.Nugget 2.代码 using EF6._0Test.EF; u ...
- 【译】理解JavaScript闭包——新手指南
闭包是JavaScript中一个基本的概念,每个JavaScript开发者都应该知道和理解的.然而,很多新手JavaScript开发者对这个概念还是很困惑的. 正确理解闭包可以帮助你写出更好.更高效. ...
- Web前端开发:Sublime Text 常用插件
在安装这些插件之前,确保你已经安装了Package Control. 安装Package Control方法: 通过菜单栏View->Show Console 或者快捷键Ctrl+` 打 ...
- 强大的xargs
xargs 命令是最重要的 Linux 命令行技巧之一.你可以使用这个命令将命令的输出作为参数传递给另一个命令.例如,搜索 png 文件然后对其进行压缩或者其它操作: find. -name *.pn ...
- 【C#】WebApi 添加过滤器,实现对请求参数和响应内容的日志记录
filter的介绍 filter在Web API中经常会用到,主要用于记录日志,安全验证,全局错误处理等:Web API提供两种过滤器的基本类型:actionfilterattribute,excep ...