《Linux内核分析》第八周笔记 进程的切换和系统的一般执行过程
20135132陈雨鑫 + 原创作品转载请注明出处 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ”
一、进程调度与进程调度的时机分析
1、进程调度
不同类型的进程有不同的调度需求
第一种分类:
I/O-bound
频繁的进行I/O
通常会花费很多时间等待I/O操作的完成
CPU-bound
计算密集型
需要大量的CPU时间进行运算
第二种分类:
批处理进程(batch process)
不必与用户交互,通常在后台运行
不必很快响应
典型的批处理程序:编译程序、科学计算
实时进程(real-time process)
有实时需求,不应被低优先级的进程阻塞
响应时间要短、要稳定
典型的实时进程:视频/音频、机械控制等
交互式进程(interactive process)
需要经常与用户交互,因此要花很多时间等待用户输入操作
响应时间要快,平均延迟要低于50~150ms
典型的交互式程序:shell、文本编辑程序、图形应用程序等
内核中的调度算法相关代码使用了类似OOD的策略模式。
2、进程调度的时机
中断处理过程(包括时钟中断、I/O中断、系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule();
内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度;
用户态进程无法实现主动调度,仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度。
二、进程上下文切换相关代码分析
1、进程的切换
1)为了控制进程的执行,内核必须有能力挂起正在CPU上执行的进程,并恢复以前挂起的某个进程的执行,这叫做进程切换、任务切换、上下文切换;
2)挂起正在CPU上执行的进程,与中断时保存现场是不同的,中断前后是在同一个进程上下文中,只是由用户态转向内核态执行;
3)进程上下文包含了进程执行需要的所有信息
用户地址空间:包括程序代码,数据,用户堆栈等
控制信息:进程描述符,内核堆栈等
硬件上下文(注意中断也要保存硬件上下文只是保存的方法不同)
4)schedule()函数选择一个新的进程来运行,并调用context_switch进行上下文的切换,这个宏调用switch_to来进行关键上下文切换
•next = pick_next_task(rq, prev);//进程调度算法都封装这个函数内部
•context_switch(rq, prev, next);//进程上下文切换
•switch_to利用了prev和next两个参数:prev指向当前进程,next指向被调度的进程
2、代码分析
关键汇编代码:
outout: thread.sp:内核态,sp是内核堆栈的栈顶
thread.ip:当前进程的eip
input: prev_sp:下一个进程的内核堆栈的栈顶
prev_ip:下一个进程执行的起点
这两句完成了内核堆栈的切换,将当前内核堆栈的栈顶保存起来,把下一个next进程的栈顶放到ESP寄存器中,之后的压栈动作都是在next进程堆栈中完成:
next_ip一般是$1f,对于新创建的子进程是ret_from_fork。
三、Linux系统的一般执行过程
1、最一般的情况:正在运行的用户态进程X切换到运行用户态进程Y的过程
- 正在运行的用户态进程X
- 发生中断——save cs:eip/esp/eflags(current) to kernel stack,then load cs:eip(entry of a specific ISR) and ss:esp(point to kernel stack).
- SAVE_ALL //保存现场
- 中断处理过程中或中断返回前调用了schedule(),其中的switch_to做了关键的进程上下文切换
- 标号1之后开始运行用户态进程Y(这里Y曾经通过以上步骤被切换出去过因此可以从标号1继续执行)
- restore_all //恢复现场
- iret - pop cs:eip/ss:esp/eflags from kernel stack
- 继续运行用户态进程Y
2、几种特殊情况
- 通过中断处理过程中的调度时机,用户态进程与内核线程之间互相切换和内核线程之间互相切换,与最一般的情况非常类似,只是内核线程运行过程中发生中断没有进程用户态和内核态的转换;
- 内核线程主动调用schedule(),只有进程上下文的切换,没有发生中断上下文的切换,与最一般的情况略简略;
- 创建子进程的系统调用在子进程中的执行起点及返回用户态,如fork;
- 加载一个新的可执行程序后返回到用户态的情况,如execve;
next_ip=ret_from_fork
3、进程的地址空间一共有4G,其中0——3G是用户态可以访问,3G以上只有内核态可以访问
四、系统架构和执行过程概述
1、系统架构
2、典型的Linux操作系统的架构
3、最简单也是最复杂的操作——ls
4、CPU和内存的角度看Linux系统的执行
- 执行gets()函数;
- 系统调用,陷入内核态,将eip/esp/cs/ds等信息压栈。
- 进程管理:等待键盘敲入指令。等待输入,CPU会调度其他进程执行,同时wait一个I/O中断;
- 敲击ls,发I/O中断给CPU,中断处理程序进行现场保存、压栈等等;
- 中断处理程序发现X进程在等待这个I/O(此时X已经变成阻塞态),处理程序将X设置为WAKE_UP;
- 进程管理可能会把进程X设置为next进程;
- gets()的系统调用就获得了从键盘上读取的数据,返回用户态。
从内存角度看,所有的物理地址都会被映射到3G以上的地址空间:因为这部分对所有进程来说都是共享的
0xc0000000以下是3G的部分,用户态。
五、实验
使用gdb跟踪分析一个schedule()函数 ,验证对Linux系统进程调度与进程切换过程的理解
关闭QEMU窗口,在shell窗口中,cd LinuxKernel回退到LinuxKernel目录,使用下面的命令启动内核并在CPU运行代码前停下以便调试:
qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img -s -S
接下来,我们就可以水平分割一个新的shell窗口出来,依次使用下面的命令启动gdb调试
gdb
(gdb) file linux-3.18.6/vmlinux
(gdb) target remote:1234
并在内核函数schedule的入口处设置断点,接下来输入c继续执行,则系统即可停在该函数处,接下来我们就可以使用命令n或者s逐步跟踪,可以详细浏览pick_next_task,switch_to等函数的执行过程
设置断点在schedule处:
六、总结
通过学习,我们了解到Linux使用了堆栈进行了进程调度。schedule()在需要的时候重新获得大内核锁、重新启用内核抢占、并检查是否一些其他的进程已经设置了当前进程的tlf_need_resched标志,如果是,整个schedule()函数重新开始执行,否则,函数结束。linux调度的核心函数为schedule,schedule函数封装了内核调度的框架。细节实现上调用具体的调度类中的函数实现。当切换进程已经选好后,就开始用户虚拟空间的处理,然后就是进程的切换switch_to()。所谓进程的切换主要就是堆栈的切换,这是由宏操作switch_to()完成的。
《Linux内核分析》第八周笔记 进程的切换和系统的一般执行过程的更多相关文章
- Linux 第八周实验 进程的切换和系统的一般执行过程
姬梦馨 原创作品 <Linux内核分析>MOOC课程:http://mooc.study.163.com/course/USTC-1000029000 第八讲 进程的切换和系统的一般执行过 ...
- 《Linux内核分析》第八周:进程的切换和系统的一般执行过程
杨舒雯(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 实验目的: 使用gdb ...
- LINUX内核分析第八周学习总结——进程的切换和系统的一般执行过程
LINUX内核分析第八周学习总结——进程的切换和系统的一般执行过程 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/c ...
- Linux 内核分析第八周学习笔记
Linux 内核分析第八周学习笔记 zl + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-10 ...
- Linux内核分析——第八周学习笔记20135308
第八周 进程的切换和系统的一般执行过程 一.进程切换的关键代码switch_to分析 1.进程调度与进程调度的时机分析 (1)进程分类 第一种分类 I/O-bound:等待I/O CPU-bound: ...
- 20135327郭皓--Linux内核分析第八周 进程的切换和系统的一般执行过程
第八周 进程的切换和系统的一般执行过程 一.进程切换的关键代码switch_to分析 1.进程调度与进程调度的时机分析 不同类型的进程有不同的调度需求 第一种分类: I/O-bound:频繁进行I/O ...
- Linux内核分析第八周——进程的切换和系统的一般执行过程
Linux内核分析第八周--进程的切换和系统的一般执行过程 李雪琦+原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/cou ...
- 《Linux内核分析》第八周 进程的切换和系统的一般执行过程
[刘蔚然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK EIGHT ...
- LINUX内核分析第八周学习总结:进程的切换和系统的一般执行过程
韩玉琪 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.进程切换的关 ...
随机推荐
- 【Ansible 文档】【译文】Playbooks 变量
Variables 变量 自动化的存在使得重复的做事情变得很容易,但是我们的系统不可能完全一样. 在某些系统中,你可能想要设置一些与其他系统不一样的行为和配置. 同样地,远程系统的行为和状态也可以影响 ...
- IO流_文件切割与合并(带配置信息)
在切割文件的时候应该生成一个记录文件信息的文件,以便在以后合并文件的时候知道这个文件原来的文件名和记录文件切割完后生成了多少个切割文件 import java.io.File; import java ...
- 控件布局_FrameLayout(网格布局)
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools=&qu ...
- python五十四课——datetime模块
3.datetime模块:理解:datetime可以认为是time模块的补充/扩展datetime模块中有一些常用类:datetime类:记录了日期和时间数据信息date类:记录了日期数据信息time ...
- HDFS的namenode从单节点扩展为HA需要注意的问题
扩展为HA需要注意的问题 原Namenode称为namenode1,新增的Namenode称为namenode2. 从namenode单节点扩展为HA模式官网上有详细的教程,下面是扩展过程中疏忽的地方 ...
- 报表嵌入到.net系统页面
目录: 1. 问题描述 2. 情形一:报表整体嵌入在.net系统框架中 3. 情形二:报表嵌入.net系统的某个页面中 4.权限控制方式 5.嵌入问题解决 1. 问题描述编辑 报表部署到Web应用服务 ...
- git fork之如何同步更新
1.打开git fork的开源项目(这里我以git fork vscode为例): 2.点击New pull request 3.选择你自己的 4.选择完后出现如图 5.调整状态,右边改为源fork地 ...
- Git-本地项目和远程项目关联
此处记录将本地项目与码云仓库关联步骤 1. 本地 Git 配置 配置一下一些基本的信息 $ git config--global user.name "Your Name" $ g ...
- Saltstack管理对象属性之grains和pillar组件
Grains组件 Grains是saltstack记录minion的一些静态信息组件,可以简单的理解为grains里面记录着每台minion的一些常用的属性,比如cpu.内存.磁盘.网络信息等,可以通 ...
- Omi框架学习之旅 - 插件机制之omi-touch 及原理说明
这个插件也能做好多好多的事,比如上拉下拉加载数据,轮播,等一切和运动有关的特效. 具体看我的allowTouch这篇博客,掌握了其用法,在来看它是怎么和omi结合的.就会很简单. 当然使用起来也比较方 ...