链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447

思路:很容易推得dp转移公式:dp[i][j] = max(dp[i][j-1],dp[i-1][j],dp[i-1][j-1]+val[i][j]) ,但是很明显离散化后也无法储存这些点,我们可以用树状数组对这个状态转移公式进行优化,我们先以y轴为第一优先级从小到大排序,以x轴为第二优先级从大到小排序,对x轴坐标进行离散化,这样我们就只需要维护x轴上的最大值即可,状态转移方程可优化为: dp[i] = max(dp[i],dp[k]+val) 其中 0<k<i,dp[k]表示dp[1]到dp[i-1]的最大值(可用树状数组维护)

实现代码:

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. const int M = 1e5+;
  4. struct node{
  5. int x,y,val;
  6. bool operator < (const node &k)const{
  7. if(y == k.y) return x > k.x;
  8. return y < k.y;
  9. }
  10. }a[M];
  11. int c[M],pos[M],n;
  12. void add(int x,int val){
  13. while(x <= n){
  14. c[x] = max(c[x],val);
  15. x += (x&-x);
  16. }
  17. }
  18.  
  19. int getsum(int x){
  20. int res = ;
  21. while(x){
  22. res = max(res,c[x]);
  23. x -= (x&-x);
  24. }
  25. return res;
  26. }
  27.  
  28. int main(){
  29. int t;
  30. scanf("%d",&t);
  31. while(t--){
  32. memset(c,,sizeof(c));
  33. scanf("%d",&n);
  34. for(int i = ;i <= n;i ++){
  35. scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].val);
  36. pos[i] = a[i].x;
  37. }
  38. sort(a+,a++n); sort(pos+,pos++n);
  39. int ans = ;
  40. for(int i = ;i <= n;i ++){
  41. int cnt = lower_bound(pos+,pos++n,a[i].x)-pos;
  42. int num = a[i].val + getsum(cnt-);
  43. ans = max(ans,num);
  44. add(cnt,num);
  45. }
  46. printf("%d\n",ans);
  47. }
  48. }

2018 CCPC网络赛 1010 hdu 6447 ( 树状数组优化dp)的更多相关文章

  1. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  2. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  3. LUOGU P2344 奶牛抗议 (树状数组优化dp)

    传送门 解题思路 树状数组优化dp,f[i]表示前i个奶牛的分组的个数,那么很容易得出$f[i]=\sum\limits_{1\leq j\leq i}f[j-1]*(sum[i]\ge sum[j- ...

  4. 【题解】Music Festival(树状数组优化dp)

    [题解]Music Festival(树状数组优化dp) Gym - 101908F 题意:有\(n\)种节目,每种节目有起始时间和结束时间和权值.同一时刻只能看一个节目(边界不算),在所有种类都看过 ...

  5. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  6. 4.9 省选模拟赛 划分序列 二分 结论 树状数组优化dp

    显然发现可以二分. 对于n<=100暴力dp f[i][j]表示前i个数分成j段对于当前的答案是否可行. 可以发现这个dp是可以被优化的 sum[i]-sum[j]<=mid sum[i] ...

  7. Codeforces 909C Python Indentation:树状数组优化dp

    题目链接:http://codeforces.com/contest/909/problem/C 题意: Python是没有大括号来标明语句块的,而是用严格的缩进来体现. 现在有一种简化版的Pytho ...

  8. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  9. Codeforces 629D Babaei and Birthday Cake(树状数组优化dp)

    题意: 线段树做法 分析: 因为每次都是在当前位置的前缀区间查询最大值,所以可以直接用树状数组优化.比线段树快了12ms~ 代码: #include<cstdio> #include< ...

随机推荐

  1. 【原创】MVC +WebUploader 实现分片上传大文件

    大文件的上传是我一直以来想学习的一个技术点,今天在项目闲暇之时,终于有机会自己尝试了一把,本文仅仅是个Demo,各种错误处理都么有,仅限于大家来学习思路. 参考博文:http://www.cnblog ...

  2. 7、存储类 & 作用域 & 生命周期 & 链接属性

    概念解析 存储类 存储类就是存储类型,也就是描述C语言变量在何种地方存储. 内存有多种管理方法:栈.堆.数据段.bss段..text段······一个变量的存储类属性就是描述这个变量存储在何种内存段中 ...

  3. Luogu3825 NOI2017 游戏 2-SAT

    传送门 第一眼看上去似乎是一个3-SAT问题 然而\(d \leq 8\)给我们的信息就是:暴力枚举 枚举\(x\)型地图变成\(a\)型地图还是\(b\)型地图(实际上不要枚举\(c\),因为\(a ...

  4. 将WinForm程序(含多个非托管Dll)合并成一个exe的方法

    原文:将WinForm程序(含多个非托管Dll)合并成一个exe的方法 开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了. ILMerge能把托管dl ...

  5. [JDBC]你真的会正确关闭connection吗?

    Connection conn = null; PreparedStatement stmt = null; ResultSet rs = null; try { conn = DriverManag ...

  6. Python基础(下)

    前言 print("\n".join([''.join(['*'*((x-y)%3) if((x*0.05)**2+(y*0.1)**2 -1)**3-(x*0.05)**2*(y ...

  7. 理解使用static import 机制

    J2SE 1.5里引入了“Static Import”机制,借助这一机制,可以用略掉所在的类或接口名的方式,来使用静态成员.本文介绍这一机制的使用方法,以及使用过程中的注意事项. 在Java程序中,是 ...

  8. 作业20171123 beta-review 成绩

    申诉 对成绩有疑问或不同意见的同学,请在群里[@杨贵福]. 申诉时间截止2017年12月13日 17:00. 成绩 review NABCD-评论 SPEC-评论 bug found 答复 bugfi ...

  9. Proxy基础---------获取collection接口的构造跟方法

    1----查看proxy api 2------测试代码 package cn.proxy01; import java.lang.reflect.Constructor; import java.l ...

  10. C程序设计实践教学提示

    实践教学要点:实验重心应放在实验室之外,重在实验准备 对实验题目的分析是一个复杂的工作,很发时间的,如全部放在实验上机时来完成,是不现实的.(特别是后面实验的难度增大,或实验代码增多的情况下),而且, ...