MT【23】用算术几何不等式证明数列极限存在
评:如果不需要精确到3,上界的求法可以利用$$(1+\frac{1}{n})^n*\frac{1}{2}*\frac{1}{2}<(\frac{n+\frac{1}{n}*n+\frac{1}{2}*2}{n+2})^{n+2}=1$$显得更简单些
MT【23】用算术几何不等式证明数列极限存在的更多相关文章
- MT【19】舒尔不等式设计理念及证明
评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- MT【322】绝对值不等式
已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...
- MT【72】一个不等式
证明: 评: 可以思考$\frac{1}{(1+b)^2}+\frac{1}{(1+a)^2}$与$\frac{2}{(1+\sqrt{ab})^2}$大小.
- MT【53】对数平均做数列放缩
[从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...
- MT【25】切线不等式原理及例题
评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.
- schwarz( 施瓦兹)不等式证明
证明 如果: 函数 y=ax^2+2bx+c 对任意x >=0 时 y>=0; 函数图象在全部x轴上方,故二次方程判别式 b^2-4ac<=0;(即方程无实数解) 即(2b)^2&l ...
随机推荐
- MFC入门(二)-- 提取输入框的字符串(定时关机的小程序)
上篇文章已经让我们有了对于MFC最简单直观的认识,但貌似并无太大的交互性可言,而且其实也没有涉及到数据的交互,所以本文通过做一个时间可以调节的定时关机的Demo来演示. MFC入门(一)地址:http ...
- 图解IIS8上解决网站第一次访问慢的处理(转载)
本篇经验以IIS8,Windows Server 2012R2做为案例.IIS8 运行在 Windows Server 2012 and Windows 8 版本以上的平台上.IIS中应用程序池和网站 ...
- LinqPad的变量比较功能
LinqPad是一个非常方便的C#工具(有免费版和收费版). 今天发现它的变量比较功能真是方便啊.且看3行代码产生如下结果: 说明:图中两个变量的成员属性值分别用红色和绿色背景标注:图很长,只截取了一 ...
- Intel x86_64 Architecture Background 2
这里是在学习Intel x86_64体系架构时学习到的一些概念,记录下来以供日后参考.如果有错的地方,欢迎指正! CPU上下文切换(context switch): 这个概念第一次听到对我来说是完全陌 ...
- item 4: 知道怎么去看推导的类型
本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 对于推导类型结果的查看,根据不同的软件开发阶段,你想知道的信息的不 ...
- 程序员眼中的Redis
Redis 是用C语言编写的内存中的数据结构存储系统,可以用来作数据库.缓存.消息中间件. 数据结构 字符串(strings):值是任何种类的字符串 散列(hashs):值是map 字典,数组+链表, ...
- CSS 边框(border)实例
CSS 边框(border)实例:元素的边框 (border) 是围绕元素内容和内边距的一条或多条线. CSS border 属性允许你规定元素边框的样式.宽度和颜色. CSS 边框属性属性 描述bo ...
- Scrum Meeting 6
第六次会议 由于之前队员一直在做数据库和编译大作业,课业压力较大,所以软工进度往后拖了好多. No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 N ...
- Linux内核分析 笔记六 进程的描述和进程的创建 ——by王玥
一.知识点总结 (一)进程的描述 1.操作系统内核里有三大功能: 进程管理 内存管理 文件系统 2.进程描述符:task_struct 2.进程描述符——struct task_struct 1. p ...
- 传参在mybatis的sql映射文件中正确获取
1.单个参数: 非自定义对象 传参:getStuById(Integer id): 取值:#{id} 单个基本类型参数,随便取值都行:#{ok} 对象: 传参:saveStudent(Student ...