MT【23】用算术几何不等式证明数列极限存在

评:如果不需要精确到3,上界的求法可以利用$$(1+\frac{1}{n})^n*\frac{1}{2}*\frac{1}{2}<(\frac{n+\frac{1}{n}*n+\frac{1}{2}*2}{n+2})^{n+2}=1$$显得更简单些
MT【23】用算术几何不等式证明数列极限存在的更多相关文章
- MT【19】舒尔不等式设计理念及证明
评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- MT【322】绝对值不等式
已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...
- MT【72】一个不等式
证明: 评: 可以思考$\frac{1}{(1+b)^2}+\frac{1}{(1+a)^2}$与$\frac{2}{(1+\sqrt{ab})^2}$大小.
- MT【53】对数平均做数列放缩
[从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...
- MT【25】切线不等式原理及例题
评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.
- schwarz( 施瓦兹)不等式证明
证明 如果: 函数 y=ax^2+2bx+c 对任意x >=0 时 y>=0; 函数图象在全部x轴上方,故二次方程判别式 b^2-4ac<=0;(即方程无实数解) 即(2b)^2&l ...
随机推荐
- BZOJ1178 APIO2009 会议中心 贪心、倍增
传送门 只有第一问就比较水了 每一次贪心地选择当前可以选择的所有线段中右端点最短的,排序之后扫一遍即可. 考虑第二问.按照编号从小到大考虑每一条线段是否能够被加入.假设当前选了一个区间集合\(T\), ...
- 微软官方的Excel android 移动版的折腾
微软官方的Excel android 移动版,有重大bug.害我折腾了一天多时间.最终确认是Excel自身的问题. 现象描述:手机上新建或是保存excel后.放到电脑上,不能打开.提示”Excel在B ...
- C#创建自己的扩展方法
C#可以创建自己的扩展方法Extension Method: 参考这篇<判断是否为空然后赋值>http://www.cnblogs.com/insus/p/8004097.html 里,前 ...
- socket、tcp、udp、http 的认识及区别
一.先来一个讲TCP.UDP和HTTP关系的 1.TCP/IP是个协议组,可分为三个层次:网络层.传输层和应用层. 在网络层有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协议. 在传输 ...
- cocoapod Podfile use frameworks swift/oc混编 could not build module xxx
前置: 知名的pod: AFNetworking 我自己的pod: AFNetworking+RX 3.1.0.18 里面有一段代码是: #import <Foundation/Founda ...
- PAT甲题题解-1130. Infix Expression (25)-中序遍历
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789828.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- React++ node.js ++SQL Sever ++MySQL++ python ++ php ++ java ++ c++ c#++ java ++ android ++ ios ++Linux+
"C语言在它诞生的那个年代,是非常不错的语言,可惜没有OOP.当项目臃肿到一定程度,人类就不可控了. 为了弥补这个缺陷,C++诞生了.而为了应对各种情况,C++设计的大而全,太多复杂的特性, ...
- B. Divisor Subtraction
链接 [http://codeforces.com/contest/1076/problem/B] 题意 给你一个小于1e10的n,进行下面的运算,n==0 结束,否则n-最小质因子,问你进行多少步 ...
- Stanford Word Segmenter的特定领域训练
有没有人自己训练过Stanford Word Segmenter分词器,因为我想做特定领域的分词,但在使用Stanford Word Segmenter分词的时候发现对于我想做的领域的一些词分词效果并 ...
- 第三个spring冲刺第8天
今天,我们忙于完成精美的背景,还有难度的具体设置,如何达到最理想化,为此我们今天主要是做了开会讨论,但还没有完全确定好结论,明天就应该能做出结论,然后修改后台的难度设置了.