1.ChatGPT简介【核心技术、技术局限】

ChatGPT(全名:Chat Generative Pre-trained Transformer),美国OpenAI 研发的聊天机器人程序 ,于2022年11月30日发布 。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文 等任务。

1.1 核心竞争力

ChatGPT受到关注的重要原因是引入新技术RLHF (Reinforcement Learning with Human Feedback,即基于人类反馈的强化学习)。RLHF 解决了生成模型的一个核心问题,即如何让人工智能模型的产出和人类的常识、认知、需求、价值观保持一致。ChatGPT是AIGC(AI- Generated Content,人工智能生成内容)技术进展的成果。**该模型能够促进利用人工智能进行内容创作、提升内容生产效率与丰富度。 **

1.2 技术局限性

ChatGPT 的使用上还有局限性,模型仍有优化空间。ChatGPT模型的能力上限是由奖励模型决定,该模型需要巨量的语料来拟合真实世界,对标注员的工作量以及综合素质要求较高。ChatGPT可能会出现创造不存在的知识,或者主观猜测提问者的意图等问题,模型的优化将是一个持续的过程。若AI技术迭代不及预期,NLP模型优化受限,则相关产业发展进度会受到影响。此外,ChatGPT盈利模式尚处于探索阶段,后续商业化落地进展有待观察。

2.国内外ChatGPT发展情况

2.1 国内外ChatGPT技术布局





上述图为引用图片,如有侵权请联系。

2.2 目前已知产品

  • 文心一言(英文名:ERNIE Bot)是百度基于文心大模型技术推出的生成式对话产品,将于2023年3月完成内测,面向公众开放

  • Bard是谷歌在一个大型语言模型基础上,推出的聊天机器人

  • MOSS是复旦大学自然语言处理实验室发布的对话式大型语言模型。

2023年2月20日,解放日报·上观新闻记者从复旦大学自然语言处理实验室获悉,MOSS已由邱锡鹏教授团队发布,邀公众参与内测。2月21日,该平台发布公告,感谢大家的关注,同时也指出,MOSS还是一个非常不成熟的模型,距离ChatGPT还有很长的路需要走

  • ChatYuan:元语智能团队

首个中文版 ChatGPT——ChatYuan 即在人工智能社区引发了广泛的讨论。如今 ChatYuan 又迎来了升级版本,支持中英双语交互、多次编辑、上下文关联交互、模拟情景设定等多种新功能。

国产自研功能对话大模型元语 ChatYuan 于 2022 年 12 月发布测试版本后,引起社会各界人士的广泛讨论,并且收到了用户的大量反馈和宝贵建议。元语智能团队已于近日对元语 ChatYuan 进行了模型效果优化和版本功能升级,现已开放内测。

3.简评ChatGPT技术路线以及目前公测产品

对于ChatGPT实现首先从要素上介绍

3.1 ChatGPT技术实现要素

简单认为以下三点比较重要:

  1. 充足的数据集(已标注)
  2. 具备大模型能力(公司、实验室)
  3. 丰富的算力机器
  4. 算法技术能力

首先针对数据集问题:

先天优势的是百度、字节跳动等公司;其次才是各大公司研究室。细化一下就是百度、字节跳动有高质量数据集(信息量足,结构化等优势)简化标注数据获取环节,有利于模型训练得到高质量模型。

其次具备大模型能力(公司、实验室)

在NLP领域AI大模型能力也是有所共见,开创新纪元。所以拥有自己的大模型是至关重要的(千亿参数量)

再者丰富的算力机器

模型训练依赖算力,没有充足AI加速卡,时不待我啊。

最后也就是具备先进的算法技术能力

这个是至关重要的,1.针对数据集其他公司可以通过爬虫方式拿到部分原生数据再加工,也算解决数据集问题吧。2.针对大模型因为目前业界开源了很多NLP各个领域的大模型任何一个人都可以获取某个领域的多任务预训练大模型。3.算力嘛,花钱可以解决,只要你足够富有。但是回归到先进的算法技术能力这里就是要出差距了,做一个“ChatGPT”外壳产品难度不大,但是要做一个真正ChatGPT难度很大。

3.2 ChatGPT技术宏观实现路径

下面从宏观实现路径进行简单讲解

3.2.1.堆砌式(封闭)模型:级别一

框架大致如下:

  • ChatGPT(智能问答)

    • 任务分类大模型分类(把问题分到到对应模型去处理)

      • 信息抽取大模型
      • 推荐系统大模型
      • 生成代码大模型
      • 智能问答大模型(单轮多轮对话)
      • 等等

主要以语义搜索推荐系统技术下给到你索引答案,只是包装了一个前端展示(对话形式)

3.2.2.堆砌式(开放)模型:级别二

  • ChatGPT(智能问答)

    • 任务分类大模型分类(把问题分到到对应模型去处理)

      • 信息抽取大模型
      • 推荐系统大模型
      • 生成代码大模型
      • 开放式智能问答大模型(单轮多轮对话)
      • 等等

引用:Datafun图片

开放域对话技术属于人机对话的一种。除了开放域对话,人机对话还包括面向任务的对话和问答对话。

面向任务的对话类似于订票、查天气等,这也是大家用得比较多的一种。

  • 问答就是有明确的需求,用户直接询问系统找答案。
  • 开放域对话与前面两者不同,前两者用户要么有明确的需求、要么有明确的场景。但开放域对话是在一个很开放的场景中进行拟人的对话,可以进行任意的对话。同时,要求对话系统有人设、有人格和情感。

可以简单理解为AI模型更智能,算法技术更厉害了。

3.2.3.基于RLHF的AIGC的堆砌式模型:级别三

简介:

RLHF (Reinforcement Learning with Human Feedback,即基于人类反馈的强化学习) RLHF 解决了生成模型的一个核心问题,即如何让人工智能模型的产出和人类的常识、认知、需求、价值观保持一致。

AIGC(AI- Generated Content,人工智能生成内容)技术进展的成果。该模型能够促进利用人工智能进行内容创作、提升内容生产效率与丰富度。

  • ChatGPT(智能问答)

    • 任务分类大模型分类(把问题分到到对应模型去处理)
    • RLHF多智能体强化学习
      • 信息抽取大模型
      • 推荐系统大模型
      • 生成代码大模型
      • 开放式智能问答大模型(单轮多轮对话)
      • 等等

讲一下级别三和级别二的区别:RLHF多智能体强化学习

级别二的各个大模型之前是独立的,级别三通过强化学习算法把各个模型耦合起来,同时模型的产出和人类的常识、认知、需求、价值观的模型。控制产出好坏也就是奖励模型决定,答案满意给出正向反馈,反之给出负分。这个设计难度也很大。

总结一下就是技术上升级了,模型更加智能输出结果更佳贴近用户。具体用户侧感受就是你可以“调教chatgpt”,产生个性化定制。当然这种和搜索推荐系统给到的个性化也是不一样的。

3.2.4.基于RLHF的AIGC的多任务完美模型模型:终极形态

  • ChatGPT(智能问答)

    • 基于RLHF强化学习的多任务完美模型模型

简单来说就是所有任务一个模型都能解决,下游任务兼容性完美! 期待一手!

3.2.5 小结

从上面四个级别可以看出,难度一次上升。个人认为openAI的chatgpt应该是第三种方案,因为终极形态相比级别三来说,难度难以想象(一个模型完成所有任务,只能说太强了)。换一个角度,我们作为用户从产品侧看是很难感知出两者区别,从目前的业界开源模型情况来看 方案三更加靠谱,落地也会更快,但技术难度还是很大的!

下面通过分析一下国内目前公测的MOSS和ChatYuan

4.对MOSS、ChatYuan给出简评

4.1 ChatYuan

它具备的功能:

  • 1.【支持多次编辑】

    第一次输入后,可以进一步提出要求,修正生成内容,快速更新所需内容。
  • 2.【支持上下文关联交互】

    支持多轮次交互,提升上下文关联理解能力,更加自然的人机交互模式。
  • 3.【模拟情景设定】

    支持模拟情景设定,如模拟对话、模拟小说背景、模拟人物性格。
  • 4.【基础代码 / 表格生成】

    初步实现生成代码功能,代码结构相对完整,部分代码逻辑持续优化中,表格生成能力初步实现。
  • 5.【支持中英文交互】

    支持中英切换交互,如输入中文可以回复英文内容
  • 6.【基础生成任务效果提升】

    内容生成效果显著提升,写公文、写故事、写论文提纲、写特定主题含关键词的诗歌等,效果较之前有比较明显的提升。







官方开源:https://github.com/clue-ai/ChatYuan

码源:https://colab.research.google.com/drive/1lEyFhEfoc-5Z5xqpEKkZt_iMaojH1MP_?usp=sharing#scrollTo=EPcJ68xtskZC

在这个notebook中我们将使用transformers库结合GPU训练ChatYuan模型,使用的是pCLUE多任务提示学习数据集。

首先从这个开源项目中,使用的数据集是pCLUE: Large-scale Prompt-based Dataset for Multi-task and Zero-shot Learning in Chinese

pCLUE:基于提示的大规模预训练数据集,用于多任务学习和零样本学习

数据集情况:

1.单分类tnews
2.单分类iflytek
3.自然语言推理ocnli
4.语义匹配afqmc
5.指代消解-cluewsc2020
6.关键词识别-csl
7.阅读理解-自由式c3
8.阅读理解-抽取式cmrc2018
9.阅读理解-成语填空chid 数据量: 120万训练数据,73个Prompt
1. 训练集 train.json: 1,200,705
2. 验证集 dev.json: 100,000
3. 公开测试集 test_public.json: 129,556
4. 测试集 test.json: 250,461 具体数据,见:./datasets
input:模型的输入
target:模型的输出
type:任务类型,阅读理解(mrc),分类(classify),生成(generate),自然语言推理(nli)
评价标准:阅读理解(em),分类(acc),生成(em),自然语言推理(acc)
answer_choices:选项(只有分类、推理类任务有)

预测任务输出情况

6300 input_string: 3号型蒸汽机车是全台铁路商务总局购入的饱合式蒸汽机车,其特征是披覆在车体上的水柜,如同马鞍般。台湾清治时期的全台铁路商务总局向英国(Hawthorn Leslie and Company),订购马鞍型水柜式机车。1889年与1893年各制造3部,总共6部。1895年甲午战争清朝战败后日本成立临时台湾铁道队来代管台湾铁路,最初将3号型全配北部线。1899年台湾总督府交通局铁道部成立后于1904年将2部机车转配彰化段。进入大正时代后又集合北部、在基隆段1部、台北段5部。1918年为了宜兰线的工程和营运而将2部机车海运至宜兰段、1920年全数转配宜兰段。随著机车逐渐老化与过时,至1926年3号机车报废。1927年在台北段2部宜兰段3部,1929年全部停止运用,1931年报废。今已无一部保存。3号-5号无另取名。
参考上述上下文,3号型蒸汽机车什么时候全部被停用?
答案: ;predict: 1929年
6400 input_string: 看购影豆原影豆是看购电影集团旗下的一个集在线购票、电影资讯、互动社区及影迷福利等服务于一体的一站式电影平台。我们致力于打造好玩的电影APP,让更多人享受电影带来的乐趣。影片资讯抢鲜看电影导读、电影解析、热映电影精彩预告片,为您提供更多精彩的电影资讯。影迷圈看有意思的内容影迷圈为您提供影迷精选内容、影迷动态,看看他们都在看什么会员享特权积分兑好礼升级会员,享受专属特权,购票更优惠。每天做任务,积分好礼随心换支付便捷看购卡购票更简单红包账户、看购卡余额、第三方支付,用户可随心组合购买影票。持有看购卡用户可直接绑卡购买,也可以使用多种支付形式组合购买影票。联系我们看购电影客服热线每天90021004006776501看购影豆热线工作日830173001057228847看购影豆APP新版开通了自助客服功能,欢迎点击我的在线客服体验小秘书服务。官方微信订阅号影豆生活官方微信服务号看购电影更新内容更新日志1.修改部分Bug
这个是关于哪方面的App应用程序的描述?
选项:银行,社区,电商,支付,经营,卡牌,借贷,驾校,理财,职考,新闻,旅游,交通,魔幻,医疗,影像,动作,工具,体育,小说,运动,相机,工具,快递,教育,股票,菜谱,行车,仙侠,亲子,购物,射击,漫画,小学,同城,成人,求职,电子,艺术,赚钱,约会,经营,兼职,视频,音乐,英语,棋牌,摄影,养生,办公,政务,视频,论坛,彩票,直播,其他,休闲,策略,通讯,买车,违章,地图,民航,电台,语言,搞笑,婚恋,超市,养车,杂志,在线,家政,影视,装修,资讯,社交,餐饮,美颜,挂号,飞行,预定,票务,笔记,买房,外卖,母婴,打车,情侣,日程,租车,博客,百科,绘画,铁路,生活,租房,酒店,保险,问答,收款,竞技,唱歌,技术,减肥,工作,团购,记账,女性,公务,二手,美妆,汽车,行程,免费,教辅,两性,出国,婚庆,民宿。
答案: ;predict: 电影资讯
6500 input_string: 你会把这个新闻推荐给关注哪方面的人:故事,文化,娱乐,体育,财经,房产,汽车,教育,科技,军事,旅游,国际,股票,农业,游戏?疫情下我国高校应届毕业生创业现状调查 1500 input_string: 来到云南红河,有中国最美的山岭雕刻,还有小巴黎之称的碧色寨
哪个类别最好的描述了这篇新闻?
选项:故事,文化,娱乐,体育,财经,房产,汽车,教育,科技,军事,旅游,国际,股票,农业,游戏
答案: ;predict: 旅游

从训练数据集以及处理的下游任务可以看出这是在做一个多任务学习的自然语言模型,关于生成式模型以及生成式多轮智能对话大模型基本不太沾边,我觉得是我在第三节里讲的级别一

这里也就是展现了算法技术的瓶颈,当然也不排除只是对方没开源。但从目前获取信息来看,肯定没有用到强化学习算法技术,距离真正AI还有差距。

当然第三节提到的四种方案,从用户侧来看相对比较难感受到的,毕竟国内语义搜索智能推荐等算法很发达,通过前端包装好。用户还是很难发现的,最多会觉得 “这个AI有点不太聪明呀”

4.2 MOSS

网上看了很多测评,暴露问题和chatyuan一样,就不在赘述了。

5.未来应用和期待

5.1 未来应用

结合ChatGPT的底层技术逻辑,有媒体曾列出了中短期内ChatGPT的潜在产业化方向:归纳性的文字类工作、代码开发相关工作、图像生成领域、智能客服类工作

5.2 期待

个人比较期待百度的文言一心以及字节跳动,在通用领域优势比较大,同时技术也比较前沿,百度飞桨在开源方面做的也比较好,值得期待。希望实现的是级别三的方案。

国内“谁”能实现chatgpt,短期穷出的类ChatGPT简评(算法侧角度为主),以及对MOSS、ChatYuan给出简评,一文带你深入了解宏观技术路线。的更多相关文章

  1. 如何注册chatgpt,如何使用chatgpt,以及chatgpt无法访问的原因。chatgpt问题总结。

    chatgpt显示所在的国家地区不可用的原因. 1:chatgpt国内是不能访问的,是需要借助魔法. 一.注册过程中的问题. \1. OpenAI或ChatGPT官网打不开.这是由于ChatGPT目前 ...

  2. c++怎么将一个类,拆分出接口类,和实现类

    还拿上一遍中定义的GradeBook类来实现: #include <iostream> using std::cout; using std::endl; #include <str ...

  3. Android反射出一个类中的其他类对象并调用其对应方法

    MainActivity如下: package cn.testreflect; import java.lang.reflect.Field; import java.lang.reflect.Met ...

  4. PHP自定义弹出消息类,用于弹出提示信息并返回

    一个用PHP自写的弹出消息类,用于在程序出错时弹出提示,,弹出警告框,或在程序运行到某阶段的快捷提示,需用时只需传入参数即可,函数并不复杂,但觉得挺实用.具体代码: function Alert($a ...

  5. Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法 Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法

    Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法 Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法 1. 卸载IE9( 装了Win7 64位后,默认 ...

  6. SQL错误代码弹出提示信息类

    截获SQL错误代码弹出提示信息类 Code:public class DBErrorCode{    /// <summary>    /// 根据错误代码弹出错误提示    /// &l ...

  7. 同学帮帮移动 H5 弹出层类组件:txbb-pop

    Txbb.Pop 同学帮帮弹出层类组件,简洁.无依赖,使用 CSS3 实现动画效果. 为什么要再造一遍轮子 弹出层是常见的业务场景,而且弹出层的业务场景很简单,没必要使用大而全的库,并且,我们经常会有 ...

  8. 再学UML-深入浅出UML类图(一)

    在UML 2.0的13种图形中,类图是使用频率最高的UML图之一.Martin Fowler在其著作<UML Distilled: A Brief Guide to the Standard O ...

  9. php实现栈的压入、弹出序列(**)(算法步骤)(画图)

    php实现栈的压入.弹出序列(**)(算法步骤)(画图) 一.总结 1.算法步骤:一定要把算法步骤写下来,要不然太浪费时间了,尤其是思维不清晰的时候,尤其是题目有难度的时候,不然的话也非常容易出现低级 ...

  10. MessageBox页面消息弹出框类

    MessageBox页面消息弹出框类: public class MessageBox { /// <summary> /// 自定义弹出窗口内容,不跳转 /// </summary ...

随机推荐

  1. vivo大数据日志采集Agent设计实践

    作者:vivo 互联网存储技术团队- Qiu Sidi 在企业大数据体系建设过程中,数据采集是其中的首要环节.然而,当前行业内的相关开源数据采集组件,并无法满足企业大规模数据采集的需求与有效的数据采集 ...

  2. 【重难点整理】通过kafka的全过程叙述kafka的原理、特性及常见问题

    一.kafka的实现原理 1.逻辑结构 2.组成 生产者:生产消息,来自服务.客户端.端口-- 消息本身:消息主体 topic主题:对消息的分类,例如数仓不同层中的不同类型数据(订单.用户--):自带 ...

  3. 100IT 名企 java 面试必考面试题

    一.Java基础(2/133) 二.Java代码报错(52/133) 三.算法与编程(55/133) 四.html&JavaScript&ajax部分 五.Java Web部分 六.数 ...

  4. 同步与异步 multiprocessing 进程对象多种方法

    目录 同步与异步 阻塞与非阻塞 综合使用 创建进程的多种方式 前言 windows系统创建进程的问题(重要) multiprocessing模块之Process 展现异步 创建进程的方式(一):使用P ...

  5. ArcGIS工具 - 按要素裁切数据库

    在GIS处理数据中,经常需要分图,将整个任务区划分成若干块,由不同的人协作完成.为了节省分图裁切时间,减少人员操作失误,为源GIS专门制作了按要素裁切数据库工具,以提高数据生产效率. 需求描述 裁切单 ...

  6. 腾讯云服务器CentOS 7.6安装基本中间件

    腾讯云服务器CentOS 7.6安装基本中间件   摘要:由于最近开始学习Redis和Zookeeper了,因此使用云服务器的频率开始多了起来,并且开始了基础的安装教学,由于我之前确实没用过Linux ...

  7. rvm安装ruby

    macOS11.1 打开终端 使用下面命令查看ruby版本 rvm list known 然后安装 rvm install 2.0.0 查看ruby版本 ruby -v   系统默认使用ruby版本 ...

  8. 基于WebSocket的实时消息传递设计

    目录 概述 整体架构 设计 流程设计 程序设计 WebSocketServer 概述 新增pom 新增配置类 创建websocket端点 WebSocketClient 概述 安装WebSocketS ...

  9. npm 环境搭建---全局安装angular cli ---升级本地angular版本---搭建ng-alain

    1.环境搭建 node -v # 查看 Node.js 当前版本 npm -v # 查看 Npm 当前版本 2.设定淘宝提供 Npm 源镜像 # 设置淘宝源 npm config set regist ...

  10. Echarts自适应屏幕,无需刷新网页,可根据屏幕大小完美展现,内有详细代码注释,我可真是个小机灵~~O(∩_∩)O哈哈~

    Echarts自适应屏幕,无需刷新网页,可根据屏幕大小完美展现 效果如图 随意拖拉,无惧检验 ~ ~ ~ ~ 下面上代码 里边有详细解释 <template> <div class= ...